Tag: armed (page 1 of 2)

Sheldan Nidle – March-07-2017

View Article Here   Read More

WHAT IS THE LOVE ESSENCE OF MUSHABA 2-4 VIA ANAKHANDA SHAKA MUSHABA AUGUST 12 2016

View Article Here   Read More

The Final Frontier: US Building War Command Center to Take Foreign Policy to Space

By Carey Wedler for The Anti-Media(ANTIMEDIA) According to Defense One, the Pentagon is rushing to build a space war center to sustain its global power. Within six months, the space apparatus will be fully functional, as announced by Deputy Defense Secretary Robert Work at the 2015 GEOINT conference. Work openly admitted the move is an attempt by the Pentagon to maintain global dominance and combat alleged attacks from China and Russia. Most prominently, the [...]

View Article Here   Read More

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here   Read More

This revolutionary discovery could help scientists see black holes for the first time


supermassive black hole
Artist's concept of the black hole.



Excerpt from finance.yahoo.com
Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.
But that could soon change.
Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.
Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.
And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves



.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.
Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.
"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."
Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening

In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.
You'll want to turn up the volume.
What you're seeing and hearing are two different things.
The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.
"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.
Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 

Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.


.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.
What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.
Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.

View Article Here   Read More

NASA To Study Mysterious ‘Magnetic Explosions’ Between Earth, Sun That Unleash Dangerous X-Rays By Brandon Mercer


(NASA)



Excerpt from sanfrancisco.cbslocal.com

NASA AMES RESEARCH CENTER (CBS SF) — Earth and the Sun may be 93 million miles apart, but cosmic explosions between the two celestial spheres occur often and with devastating effects–unleashing waves of X-ray radiation and disrupting GPS communications, and it is with this danger in mind that next month, NASA will launch four “Magnetospheric Multiscale Mission” satellites, studying these “magnetic reconnections” and better predicting the consequences of these cosmic phenomena.

NASA Ames Research Center in Mountain View uses supercomputers to create theoretical models of the magnetic fields on the sun, but the new mission will be able to actually observe what is happening, from a lofty vantage point `far above the Earth’s pole.




The mysterious magnetic reconnections actually transfer energy and physical particles from the Sun to Earth. The forces at work can accelerate particles to nearly the speed of light, with devastating consequences.

In October 2003, a massive release of X-ray radiation hit Earth in what became known as the Halloween Storms. The energy triggered the first ever radiation warning to aircraft, alerting pilots that high altitude flights could expose passengers and crew to unhealthy levels of radiation.

Simultaneously, the GPS location system was impacted. Back then, this wasn’t as great a concern for the general public. It mainly affected the military, pilots, and sea captains, but were the same event to occur today, it may be much more noticeable with today’s smartphone world where everything we do is geo-tagged and coordinated using the GPS signals. In the future, it could evven impact autonomous self-driving vehicles and airborne drones that rely on GPS.

Karen C. Fox from NASA’s Goddard Space Flight Center in Greenbelt, Maryland writes, “Understanding vast systems in space requires understanding what’s happening on widely different scales. Giant events can turn out to have tiny drivers — take, for example, what rocked near-Earth space in October 2003.”
The Halloween geomagnetic storms had a beautiful side too. The Northern Lights were visible clear down to Southern California, and even Texas.

The Magnetospheric Multiscale, or MMS, mission will be the first ever mission dedicated to studying this universal process by orbiting Earth, and passing directly through nearby magnetic reconnection regions.

“Armed with this data, scientists will have their first chance to watch magnetic reconnection from the inside, right as it’s occurring. By focusing on the small-scale process, scientists open the door to understanding what happens on larger scales throughout the universe,” wrote Fox. 

View Article Here   Read More

Astronomers search for missing brown dwarf star



Excerpt from sciencerecorder.com





Armed with one of the largest telescopes in the world, the aptly named Very Large Telescope at the ESO Observatory in Chile, astronomers are conducting a search for what they once were certain had to be a brown dwarf star. The only problem is that now the star seems to have vanished without evidence.

What happened? Brown dwarfs, compared to their better known red dwarf counterparts are significantly cooler, dimmer objects which at a glance bear more resemblance to planets than to other stars.

Although they release heat and bear a chemical composition similar to that of the sun, astronomers tend to refer to them as “failed stars,” since they are too small to set off any thermonuclear reactions within their cores. This particular vanishing dwarf was thought to be part of a double-star system, the V471 Tauri, located within the Taurus constellation, only 163 light years from Earth. Within this system, the stars orbit each other in 12 hour intervals, which causes the brightness to diminish every six hours, when one star crosses directly in front of the other. 



However, the timing of this eclipse never happened at an entirely predictable pace, leading the researchers to suspect that a brown dwarf’s gravitational pull was pushing on the stars and causing the lapse – it’s the only thing consistent with the minimal lapsing patterns. With the use of a new powerful camera called SPHERE, they set out to plot out the location of the brown dwarf, but found nothing where they predicted it would be. 

“This is how science works,” said Adam Hardy, the study’s lead author who remains undaunted by the road ahead. The new study was published this week by the journal, Astrophysical Journal Letters. “Observations with new technology can either confirm or, as in this case, disprove earlier ideas.”
Perhaps most intriguing is that while a brown dwarf appears to be hiding from them, the cluster it waxes influence over is among the brightest and largest of deep-sky objects visible in the evening sky.
The binary star system is found in what astronomers call the Hyades cluster, named for the nymphs of Greek mythology who are responsible for the rain.

View Article Here   Read More

4 Sky Events This Week: Inner Planets Dance While Saturn Dazzles


Illustration of moon pairing with star in the Virgo constellation
The moon pairs with the brightest star in the constellation Virgo on Tuesday.
Illustration by A.Fazekas, SkySafari


Excerpt from news.nationalgeographic.com

An eclipse of a volcanic moon by the king of planets, Jupiter, will thrill stargazers this week, as Earth's moon rides above the ringed world, Saturn.

Moon meets Maiden. On Tuesday, January 13, early birds will enjoy a particularly close encounter with the last quarter moon of the month and with the bright star Spica. All the action takes place in the constellation Virgo, the Maiden, halfway up the southern sky at dawn.

The 250-light-year-distant star appears only 2 degrees below the moon, a distance equal to about the width of your thumb held at arm's length.

It's amazing to realize that the light from Spica left on its journey to Earth back in 1765. That's the year that Great Britain passed the Stamp Act, the first direct tax levied on the American colonies and a prelude of the parliamentary oversteps that led to the American Revolution.

Mercury at its best. Look for faint Mercury about a half-hour after sunset on Wednesday, January 14, just above the southwestern horizon.

The innermost planet will appear at its farthest point away from the sun, a moment called the greatest elongation. Sitting 19 degrees east of the sun, it would be challenging to track down its faint point of light if it weren't for the nearby, superbright Venus.

The planetary duo will appear only 1.3 degrees apart, making the pair particularly impressive when viewed through binoculars or a small telescope. Look carefully and you may notice that Mercury appears to be a miniature version of the half-lit moon...

Illustration of Venus and Mercury in close conjunction in the southwest sky
This skychart shows Venus and Mercury in close conjunction in the southwest sky after sunset on Wednesday.
Illustration by A.Fazekas, SkySafari

Volcanic moon eclipse. Sky-watchers armed with telescopes will witness a distant eclipse of Jupiter's moon Io in the early morning hours of Friday, January 16.

At 12:27 a.m. EST, the gas giant's own shadow will glide across the tiny disk of the volcanic moon, which will be visible to the west of the planet.

Also early on Thursday night at 10:56 p.m. EST, Jupiter's massive storm, the Great Red Spot, crosses the middle of the planet's disk. Appearing as an orange-pink oval structure, this hurricane circles the planet every 12 hours or so and is three times larger than the Earth. 

Illustration of Jupiter in the late night southwest sky
This wide-angle skychart shows the location of Jupiter in the southeast sky on Thursday evening and early morning Friday. The insert telescope view shows Jupiter and location of its moon Io just before it enters the planet’s shadow.
Illustration by A.Fazekas, SkySafari
Luna and Saturn. Later on, near dawn on Friday, January 16, the waning crescent moon will appear to park itself just 2 degrees north of Lord of the Rings.

The ringed world can't be missed with the naked eye since it is the brightest object visible in the southeastern predawn sky. Its proximity to the moon will make it that much easier to identify.
Train a telescope on this yellow-tinged point of light, and it will readily reveal its stunning rings, tilted a full 25 degrees toward Earth. Currently Saturn sits nearly 994,000 miles (1.6 billion kilometers) away from Earth, which means that the reflected sunlight off its cloud tops takes 87.4 minutes to reach our eyes.
Happy hunting!

View Article Here   Read More

Stunning 3-D Models Reveal Bizarre Double Star Ready to Explode


Picture of Eta Carinae star in the southern constellation of Carina
The supermassive star pair Eta Carinae erupted in the 1840s and produced this double-lobed cloud of dust called the Homunculus Nebula.

Excerpt from news.nationalgeographic.com

The star system Eta Carinae sends out the brightest flares yet recorded.

SEATTLE—Armed with a 3-D printer, a supercomputer, and several space telescopes, astronomers have gotten their best look yet at one of the galaxy's biggest, weirdest double star systems.

Surprising new observations of the system, known as Eta Carinae, described Wednesday at the American Astronomical Society's annual winter meeting, include a set of oddly bright flares that might signal a change in the two stars' billowing stellar winds. What's more, 3-D printed simulations show unexpected anatomy within the star system's churning, tempestuous center.

Scientists have kept a close eye on Eta Carinae since the 1840s, when a series of unexpected eruptions briefly transformed it into the brightest star in the southern sky. At any time, the unstable system could explode in a spectacular supernova. (Don't worry—Earth will be fine. But the light show will be unforgettable.)

The new observations don't pin down when Eta Carinae might explode, but they are helping astronomers better understand the turbulent pair.

"It's not only the most massive and luminous object that's close to us, but it's also extremely erratic," says astronomer Michael Corcoran of NASA's Goddard Space Flight Center, in Greenbelt, Maryland.

View Article Here   Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here   Read More

10 Signs That You’re Fully Awake

A great article from www.pakalertpress.comIsn’t it obvious that there is a significant global awakening happening? Just as the Mayans predicted so many years ago, the apocalypse would become apparent in 2012. But many misinterpret the apocalypse to be the end of the world, when in fact it actually means an “un-covering, a revelation of something hidden.”As many continue to argue the accuracy of the Mayan calendar, it can no longer be argued that a great many people are finally [...]

View Article Here   Read More

Cosmic Awareness Newsletter 2012-01

{mainvote}

7 March 2012

Channeler: Will Berlinghof

Well...Anasazi1 just made me realize that there was no Cosmic Awareness message posted here recently,so here's the most recent one avaiable right one,as the CAC newsletter is for mem...

View Article Here   Read More

In the Now…. or is it?

Cheered along, I pull the door closed behind me. The ladies are awake, but their schedule is a bit more relaxed than mine.

Laura will have to be on the train by eight thirty, armed with my netbook to do her homework on the train home. No, I've no...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑