Tag: certainty (page 1 of 3)

Mike Quinsey – Channeling his Higher Self – 13th January 2017

View Article Here   Read More

God: Heavenletter #5855 – Life on Earth Is Not about Certainty – December 5, 2016

View Article Here   Read More

RV DELAYED Mike Quinsey Higher Self 4-11-16 Galactic Federation of Light

View Article Here   Read More

Mike Quinsey – Higher Self – September-30-2016

View Article Here   Read More

Belen de la Paz – 144 000 Eagles Take Flight – March-14-2016

View Article Here   Read More

Solar System / Planetary Situation Update

  Clearing of the Chimera group continues. The main problem remaining are implants of the Cabal members, connected with Tunnels of Set to Yaldabaoth plasma accretion vortex which extends throughout the Solar system, tied to plasma strangelet and t...

View Article Here   Read More

Sea Salt Discovered on Jupiter’s Moon Europa

This image shows a view of the trailing hemisphere of Jupiter's ice-covered satellite, Europa, in approximate natural color. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.   Image via Galileo spacecraft in 1996.

Europa is thought to have a subsurface ocean. Salt from this hidden sea might be emerging in long fractures visible in the moon’s crust.



Excerpt earthsky.org


Laboratory experiments have lead to new information about the chemical composition of the mysterious dark material in the long, dark fractures on the surface of Europa, a large moon of Jupiter. Researchers at NASA’s Jet Propulsion Laboratory (JPL) mimicked conditions on Europa’s surface. They now say that the dark material is discolored salt, likely sea salt from below the moon’s icy crust. The journal Geological Research Letters published their study on May 15, 2015.

The scientists say this new insight is important in considering whether this icy moon might be hospitable for extraterrestrial life. The life question is a key one for Europa, since this world is believed to have a liquid ocean beneath its crust. The presence of sea salt on Europa’s surface suggests the ocean is interacting with its rocky seafloor.

Scientists have been intensely curious about Europa since Galileo discovered it in 1610. In recent years, they’ve puzzled over the dark material coating the long, linear fractures on Europa’s observable surface. The material was associated with young terrain on this moon of Jupiter, suggesting that it had erupted from within Europa.
However, the chemical composition of the dark material remained elusive, until now.
Planetary scientist Kevin Hand at JPL led the new study. He said in a statement:
If it’s just salt from the ocean below, that would be a simple and elegant solution for what the dark, mysterious material is.
Europa is immersed radiation from Jupiter’s powerful magnetic field, causing high-powered electrons to slam into the moon’s surface. Hand and his team created a laboratory test that mimicked the conditions of Europa’s temperature, pressure, and radiation exposure. They tested a variety of samples including common salt – sodium chloride – and salt water in a vacuum chamber at Europa’s chilly surface temperature of minus 280 degrees Fahrenheit (minus 173 Celsius). They also bombarded the samples with an electron beam to imitate Jupiter’s influence. 

After several hours – a time period corresponding to over a century on Europa, the researchers said – the salt samples were observed to go from white to a yellowish brown, the color similar to the features on the icy moon. Hand said:
This work tells us the chemical signature of radiation-baked sodium chloride is a compelling match to spacecraft data for Europa’s mystery material.
A
A “Europa-in-a-can” laboratory setup at NASA-JPL mimics conditions of temperature, near vacuum and heavy radiation on the surface of Jupiter’s icy moon. Image via NASA/JPL-Caltech


A close-up of salt grains discolored by radiation following exposure in a
Close-up of salt grains discolored by radiation following exposure in a “Europa-in-a-can” test setup at JPL. Image via NASA/JPL-Caltech


Until now, telescopic observations have only shown glimpses of irradiated salts. No telescope on Earth can observe Europa’s surface with enough resolution to identify them with certainty. Researchers suggest additional spacecraft observation to gather more evidence.
A visit to this icy world would help answer the most tantalizing questions about Europa. Long believed to have a liquid ocean of salt water below its icy surface, this moon continues to display promising conditions for extraterrestrial life. 

As Europa orbits Jupiter, it experiences strong tidal forces similar to Earth and the Moon. These forces from Jupiter and the other Jovian moons cause Europa to flex and stretch, which creates heat, and results in Europa having a warm internal temperature than it would with just the heat from the Sun alone. 

Recent observable geological activity also creates strong evidence that the subsurface ocean interacts directly with Europa’s rocky interior, making geothermal vents, like those in Earth’s oceans, a strong possibility as well. 

These hydrothermal vent ecosystems on Earth thrive with no energy from the sun. Bacteria, shrimp and crustaceans have all been observed in these extreme environments, surviving on what researchers have deemed chemosythesis.

With Europa’s enormous amount of liquid salt water, essential chemical elements and geological activity, this long discovered icy moon appears to be one of the solar systems most promising locations for habitable requirements for life. 

However, until a devoted spacecraft visit’s, nothing beyond hopeful speculation can be proven, the researchers say.

Bottom line: Researchers at NASA’s Jet Propulsion Laboratory created laboratory conditions that mimicked those on Jupiter’s large moon Europa, to learn the chemical compositions of the material in long, dark fractures in the moon’s surface. They now believe this material is sea salt, which has emerged to Europa’s surface from its liquid ocean below.

View Article Here   Read More

New research shows billions of habitable planets exist in our galaxy



CGI of how the Milky Way galaxy may appear from deep space


Excerpt from thespacereporter.com


Analysis of data collected by NASA’s Kepler space telescope has led researchers at the Australian National University and the Niels Bohr Institute to conclude that Earth is only one of billions of potentially life-sustaining planets in our galaxy.

In order for a planet to sustain life, it must orbit its star at just the right distance to provide sufficient light and warmth to maintain liquid water without too much radiation. This perfect orbital distance is considered to be the habitable zone.

According to a Weather Channel report, there are an average of two planets per star in the Milky Way Galaxy orbiting within their habitable zones. That brings the total number of planets with the potential for holding liquid water to 100 billion.

Scientists assume that water would be an essential ingredient for life to evolve on other planets, but it is not a certainty.

“If you have liquid water, then you should have better conditions for life, we think,” said Steffen Jacobsen of Niels Bohr. “Of course, we don’t know this yet. We can’t say for certain.”

To reach their conclusion, the researchers studied 151 planetary systems and focused on those with four or more planets. They used a concept called the Titus-Bode law to calculate where unseen planets might be located in a system based on the placements of other planets around the star. The Titus-Bode law suggested the existence of Uranus before it was actually seen.

The data will require further analysis and the sky will require further searching to yield a more accurate number of potentially life-harboring planets.
“Some of these planets are so small the Kepler team will probably have missed them in the first attempt because the signals we get are so weak. They may be hidden in the noise,” Jacobsen said.

The initial analysis, however, is extremely promising in the possibility of finding habitable planets. “Our research indicates that there are a lot of planets in the habitable zone and we know there are a lot of stars like the one we’re looking at. We know that means we’re going to have many billions of planets in the habitable zone,” said Jacobsen, who considers that “very good news for the search for life.”

View Article Here   Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here   Read More

Experts Say It’s ‘More Unlikely Than Likely’ That 2014 Was Hottest Year on Record



Excerpt from theblaze.com

When asked whether 2014 was the warmest year so far on record, scientists within the National Oceanic and Atmospheric Administration said it’s “more unlikely than likely.” In its annual “state of the climate” analysis, climate experts could say with only 48 percent certainty that 2014 was the warmest year on record.
However, scientists were 90.4 percent sure it was one of the five warmest years while they were nearly postive (99.2 percent) 2014 was one of the 10 warmest years. Meanwhile, there was no doubt that last year was one of the 20 warmest years on record, nor was there any question of 2014 being warmer than the average in the 20th century and warmer than the average from 1981- 2010:
  • Warmest year on record: 48 percent
  • One of the five warmest years: 90.4 percent
  • One of the 10 warmest years: 99.2 percent
  • One of the 20 warmest years: 100 percent
  • Warmer than the 20th century average: 100 percent
  • Warmer than the 1981-2010 average: 100 percent
Of those percentages, the National Oceanic and Atmospheric Association’s National Climatic Data Center gave descriptors that indicate the certainty of such predictions, with 33.3 percent to 50 percent (the degree of certainty with which scientists asserted 2014 was the warmest)  categorized as “more unlikely than likely.”

Image source: National Oceanic and Atmospheric Administration
Image source: National Oceanic and Atmospheric Administration


View Article Here   Read More

Astronomers Have Discovered Eight Potentially Habitable Planets


Credit: David A. Aguilar (CfA)


Excerpt from  forbes.com

Astronomers have announced that they have discovered eight more planets that likely exist in temperature ranges where life could exist.

The astronomers began their research path by examining candidates for planets that had been identified by NASA’s Kepler mission. The candidates were analyzed using a supercomputer running algorithms at NASA’s Ames facility.

After exploring the statistical likelihood of the planets’ existence, the team followed up with months of observations using a variety of different methods. The planets are distant enough, however, that their habitabiliy is still only a likelihood, not a certainty.

“We don’t know for sure whether any of the planets in our sample are truly habitable,” researcher David Kipping said in a statement. “All we can say is that they’re promising candidates.”

The two most potentially Earth-like planets of the group of eight are Kepler-438b and Kepler-442b, both of which circle red dwarf stars are are respectively 70% and 97% likely to be in the habitable temperature zones of their respective stars. However, it should be noted that there are serious issues regarding the potential habitability of planets circling red dwarf stars, so confirmation will require significantly more study.

View Article Here   Read More

CERN Discovery Could be a Newly Discovered Particle, not the Elusive God Particle

Section of the Large Hadron Collider at Cern,SwitzerlandExcerpt fromspacedaily.comby Brooks HaysScientists were quite excited  when researchers last year announced they had observed the Higgs particle in the CERN particle accelerator known as the ...

View Article Here   Read More

Has Amelia Earhart’s plane finally been found? Not so fast


 


Excerpt from

A small group of wreckage hunters purports to have found a bit of Earhart’s Lockheed Electra aircraft. It’s a good story, but critics of the find are more vocal than ever.


A metal sheet, some small bones and an “ointment pot” may be the final artifacts of Amelia Earhart’s failed 1937 journey around the world, if a small group of wreckage hunters is to be believed. They could also be the remains of some other plane, a turtle and trash. 

But the International Group for Historic Aircraft Recovery (Tighar), which first found the warped bit of aluminum on a 1991 trip to the tiny atoll of Nikumaroro, in the Republic of Kiribati, says the 19in-by-23in slab has to be part of Earhart’s Lockheed Electra aircraft, which disappeared while she was flying over the Pacific. 

Tighar’s executive director Ric Gillespie made headlines this week by announcing “new research” into the 1991 fragment that he says answers earlier critics and proves it is from Earhart’s plane. 

The story he proposes is not implausible: the metal’s rivets don’t match with the Electra’s design, but that’s because because it’s actually a patch made to repair the aircraft after a bad landing in Miami, earlier on Earhart’s trip. Gillespie’s team managed to find a Miami Herald photo from 1937 which shows, over the place where a window should be, a particularly shiny piece of metal. In fact, a lab tested the metal back in 1996 and found it to be “essentially the same” 24ST Alclad aluminum that was to cover most aircraft of the 30s, including Earhart’s Electra. Gillespie says that “the patch was as unique to her particular aircraft as a fingerprint is to an individual … [the aluminum] matches that fingerprint in many respects”.
Metal fragment believed to be from Amelia Earhart's plane
The aluminium fragment believed to be from Amelia Earhart’s aircraft.Photograph: Tighar/Reuters

Under Gillespie’s theory, Earhart made it to the island, sent radio signals “for at least five nights before the Electra was washed into the ocean”, and eventually died there.

But Gillsepie’s been here before, and his critics are not quiet, with one saying: “Everybody should have facts to back up [their] opinions, and Mr Gillespie, well, he doesn’t.” (A second, more concisely, says: “He’s very creative.”) After discovering the metal, Gillespie gave a 1992 press conference to say that “every possibility has been checked, every alternative eliminated … We found a piece of Amelia Earhart’s aircraft.”

Objectors immediately pointed out that he had not checked the fragment’s rivets, which did not match Earhart’s Electra. Now, 22 years later, the photo could indeed explain the discrepancy – but Gillespie still lacks a wreck to compare the pattern to. As a substitute, Gillespie’s team went to a Kansas facility that’s restoring an Electra and claims to have found – by holding the patch up alongside the restored plane – that the rivets seemed consistent with the pattern. No independent researchers have confirmed their findings.

To be fair, Tighar realizes they know less about the scrap than they’d like: “If the artifact is not the scab patch from NR16020, then it is a random piece of aircraft wreckage from some unknown type involved in an unknown accident that just happens to match the dozens of material and dimensional requirements of the patch.”

Considering the vastness of the Pacific Ocean and the sheer amount of wreckage scattered across it over the past century, this actually seems pretty reasonable, but Tighar doubles down on its implication of certainty: “[That would mean] this incredibly specific, but random, piece of debris just happened to end up on Nikumaroro, the atoll where so much other evidence points to Earhart.”

What evidence does Tighar present? In 2011 they tested three bones found near a turtle shell, which could perhaps have been human or that of a turtle. DNA tests were inconclusive. (Gillespie says “the door is still open for it to be a human finger bone.”)

Gillespie told the Miami Herald earlier this year that “the key to it is her final message, where she says ‘line of position 157 dash 337’ … That’s a line that Noonan calculated from the sunrise, running 337 degrees to the north-west and 157 degrees to the south-east. And if you follow it far enough, there are two deserted islands on it, McKeon Island and Gardner Island.” 

It’s a good story, just like the one ex-marine Floyd Kilts used to tell about how a tribesman told him about a partial human skeleton and a woman’s shoe, which ended up with a British official and disappeared afterward. (Micronesians settled on the island a year after Earhart vanished.) But despite all the story and circumstantial evidence, no expedition in the past 70 years has found the Electra on or near either island.

But Tighar of course thinks it might. It found a “sonar streak” 600ft below the surface “the right size, the right shape … in the right place to be part of the Electra”, which the group has so far had neither the time nor funding to investigate. Gillespie admits it could also be part of a reef, a geological formation or any number of things once lodged into the seabed and now drifted away. He intends to explore the site in a 2015 expedition. Whether he turns up with Earhart’s lost Electra or something else entirely, he will have a new story.

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑