Tag: constellation (page 1 of 5)

Saint Germain, Mother dethrones Babylon, August-01-2016

View Article Here   Read More

Sanat Kumara, Shifting as a Pyramid of Light July-16-2016

View Article Here   Read More

Take a Spaceship Journey to Arp. 273 ~ Hubble Zoom

Arp 273 is a group of galaxies which interact with each other.  The constellation is 300 million light years away from Earth in the constellation Andromeda. The Andromeda galaxy is also located in the Andromeda constellation. The larger of th...

View Article Here   Read More

Take an amazing spaceship journey to Omega Centauri


From Wikipedia.org: Omega Centauri (ω Cen), or NGC 5139, is a globular cluster in the constellation of Centaurus that was identified by Edmond Halley in 1677. Located at a distance of 15,800 light-years (4,850 pc), it is the largest globular cluster in the Milky Way galaxy at a diameter of roughly 150 light-years. It is estimated to contain approximately 10 million stars and a total mass equivalent to 4 million solar masses.
Omega Centauri is so distinctive from the other galactic globular clusters that it is thought to have an alternate origin as the core remnant of a disrupted dwarf galaxy.

Click to zoom

View Article Here   Read More

Astronomers Measure Distance to Farthest Galaxy Yet



The farthest confirmed galaxy observed to date was identified in this Hubble image of a field of galaxies.  The inset image of the galaxy has been colored blue as suggestive of its young stars. Credit NASA/European Space Agency/Yale/University of California, Santa Cruz


Excerpt from nytimes.com

Leapfrogging backward in time to when the universe was apparently feeling its oats, a group of astronomers reported Tuesday that they had measured a bona fide distance to one of the farthest and thus earliest galaxies known.

The galaxy, more than a few billion light-years on the other side of the northern constellation Boötes, is one of the most massive and brightest in the early universe and goes by the name of EGS-zs8-1. 
It flowered into stardom only 670 million years after the Big Bang.
The light from that galaxy has taken 13 billion years to reach telescopes on Earth. By now, however, since the universe has continued to expand during that time, the galaxy is about 30 billion light-years away, according to standard cosmological calculations.
The new measurements allow astronomers to see the galaxy in its infancy. Despite its relative youth, however, it is already about one-sixth as massive as the Milky Way, which is 10 billion years old. And it is getting bigger, making stars 80 times faster than the Milky Way is making them today. The discovery was reported in The Astrophysical Journal by Pascal Oesch of Yale University and his colleagues.

By the rules of the expanding universe, the farther away a galaxy is, the faster it is retreating from us, measured by the “redshift” of its light being broadened to longer wavelengths, the way an ambulance siren seems to lower its pitch as it goes by.

In the past few years, as astronomers have raced one another into the past with instruments like the Hubble Space Telescope, galaxies have been found that appear even more distant. Those measurements, however, were estimates based on the colors of the objects — so-called photometric redshifts.

The new galaxy stuck out in a survey of distant galaxies by the Hubble and Spitzer space telescopes known as Candels, for Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Its redshift was precisely measured with a powerful spectrograph known as Mosfire — Multi-Object Spectrometer for Infrared Exploration — on Keck 1, one of a pair of 10-meter-diameter telescopes on Mauna Kea in Hawaii. That makes it the highest redshift confirmed in this way, said Garth Illingworth, of the University of California, Santa Cruz, one of the astronomers in the study.

How galaxies were able to form and grow so rapidly after the lights came on in the universe is a mystery that will be addressed by a coming generation of instruments like the James Webb Space Telescope and the Thirty Meter Telescope, a goliath planned for Mauna Kea, already home to a dozen telescopes.

Recently, however, construction of the Thirty Meter Telescope, a $1.4 billion project, has been halted by protests by Hawaii residents who feel their mountain has been abused. An echo of that controversy appears in the new paper, in which Dr. Oesch and his colleagues write: “The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.”

View Article Here   Read More

Huge Alien Planet Bathes in the Light of Four Suns



30 Ari with its newly discovered companion stars
Karen Teramura

Excerpt from nbcnews.com


Astronomers have spotted a fourth star in a planetary system called 30 Ari, bringing the number of known planet-harboring quadruple-sun systems to two. 

"Star systems come in myriad forms. There can be single stars, binary stars, triple stars, even quintuple star systems," study lead author Lewis Roberts, of NASA's Jet Propulsion Laboratory, said in a statement. "It's amazing the way nature puts these things together." 

30 Ari lies 136 light-years from the sun in the constellation Aries. Astronomers discovered a giant planet in the system in 2009; the world is about 10 times more massive than Jupiter and orbits its primary star every 335 days. There's also a pair of stars that lie approximately 1,670 astronomical units away. (One AU is the distance between Earth and the sun — about 93 million miles, or 150 million kilometers).

The newfound star circles its companion once every 80 years, at a distance of just 22 AU, but it does not appear to affect the exoplanet's orbit despite such proximity. This is a surprising result that will require further observations to understand, researchers said. 

To a hypothetical observer cruising through the giant planet's atmosphere, the sky would appear to host one small sun and two bright stars visible in daylight. With a large enough telescope, one of the bright stars could be resolved into a binary pair. 

The discovery marks just the second time a planet has been identified in a four-star system. The first four-star planet, PH1b or Kepler-64b, was spotted in 2012 by citizen scientists using publicly available data from NASA's Kepler mission. 

Planets with multiple suns have become less of a novelty in recent years, as astronomers have found a number of real worlds that resemble Tatooine, Luke Skywalker's home planet in the Star Wars films. 

The research was published online this month in the Astronomical Journal.

View Article Here   Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here   Read More

Mystery space explosion in 1670 solved


Nova Vulpeculae 1670


By Kathy Fey

A mystery explosion in the night sky turns out to have been caused by colliding stars.




One of history’s mysteries revolved around a strange explosion observed in the sky in 1670, long thought to have been the first nova on record. Recent research suggests that this enigmatic event was actually a rare stellar collision.

According to a report by Astronomy Magazine, the so-called Nova Vulpeculae of 1670 was more likely the collision of two stars, which shines brighter than a nova but not as brightly as a supernova.

Observations made with various telescopes including the Submillimeter Array, the Effelsburg radio telescope and APEX have revealed the more unusual nature of the light source – a violent collision.

When the event first occurred, it would have been visible from Earth with the naked eye. Now, submillimeter telescopes are needed to detect the traces left in the aftermath of the event.

When first observed, 17th century astronomers described what they saw as a new star appearing in the head of Cygnus, the swan constellation.

“For many years, this object was thought to be a nova, but the more it was studied, the less it looked like an ordinary nova, or indeed any other kind of exploding star,” said Tomasz Kaminski of the European Southern Observatory.

Having observed the area of the supposed nova with both submillimeter and radio wavelengths, scientists “have found that the surroundings of the remnant are bathed in a cool gas rich in molecules with a very unusual chemical composition,” said Kaminski.

Researchers concluded that the amount of cool material they observed was too much to have been produced by a nova. The nature of the gas debris best fit with the rare scenario of two stars merging in an explosive collision.

The team’s report was published in the journal Nature.

Karl Menten of the Max Planck Institute called the discovery “the most fun – something that is completely unexpected.”

View Article Here   Read More

Our new neighbours: Rare dwarf galaxies found orbiting the Milky Way

The Large and Small Magellanic Clouds, near which the satellites were found. Excerpt from cnet.com Researchers have found rare satellite dwarf galaxies and candidate dwarf galaxies in orbit around our Milky Way, the largest number of such...

View Article Here   Read More

Exoplanet Bonanza Boosts Count by 1,200

Excerpt from news.discovery.comDozens of candidate worlds reside within the "habitable zones" of their parent stars. THE GIST - NASA's Kepler telescope has found more than 1,200 extrasolar planet candidates. - Smaller worlds, like Earth,...

View Article Here   Read More

Is This a Baby Picture of a Giant Planet?


Hubble optical image (left) and VLT infrared image (right) of the circumstellar disk surrounding HD 100546. (ESO/NASA/ESA/Ardila et al.)


Excerpt from news.discovery.com


Mommy, where do baby planets come from? There’s no storks, birds, bees, or romantic dinners for two involved in the answer to that question — regardless of size, planets are all formed in pretty much the same way: through the aggregation of material within the disk of dust and gas surrounding a young star. While how long it actually takes and just what sort of planets are most likely to form where are still topics of discussion among astronomers, the birth process of a planet is fairly well understood.

And this may be the very first image of it actually happening.

Acquired by the European Southern Observatory’s Very Large Telescope (VLT), the infrared image above (right) shows a portion of the disk of gas and dust around the star HD100546, located 335 light-years away in the constellation Musca. By physically blocking out the light from the star itself by means of an opaque screen — seen along the left side of the image — the light from the protoplanetary disk around HD 100546 can be seen, revealing a large bright clump that’s thought to be a planet in the process of formation.

If it is indeed a baby planet, it’s a big one — as large as, or perhaps even larger than, Jupiter.

A candidate protoplanet found in a disc of gas and dust around young star HD100546 (ESO)


This does raise an interesting question for astronomers because if it is a Jupiter-sized planet, it’s awfully far from its star… at least according to many current models of planetary formation. About 68 times as far from HD100546 as we are from the sun, if this planet were in our solar system it’d be located deep in the Kuiper Belt, twice as far as Pluto. That’s not where one would typically expect to find gas giants, so it’s been hypothesized that this protoplanet might have migrated outwards after initially forming closer to the star… perhaps “kicked out” by gravitational interaction with an even more massive planet.

Alternatively, it may not be a planet at all — the bright blob in the VLT image might be coming from a much more distant source. While extremely unlikely, further research will be needed to rule that possibility out.

If it’s found to be a planet, HD100546 “b” would offer scientists an unprecedented opportunity to observe a planetary formation process in action — and from a relatively close proximity as well.

According to the team’s paper, submitted to Astrophysical Journal Letters, ”What makes HD100546 particularly interesting is that 1. it would be the first imaged protoplanet that is still embedded in the gas and dust disk of its host star; and 2. it would show that planet formation does occur at large orbital separations.”

(Now all we have to do is wait a couple billion years and then show these pictures to HD100546b’s girlfriend. How embarrassing!)

View Article Here   Read More

Exoplanet Imager Begins Hunt for Alien Worlds


This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus.


Excerpt from news.discovery.com

By Ian O'Neill

A new instrument attached to one of the most powerful telescopes in the world has been switched on and acquired its ‘first light’ images of alien star systems and Saturn’s moon Titan.
The Spectro-Polarimetric High-contrast Exoplanet REsearch (or SPHIRES) instrument has been recently installed at the ESO’s Very Large Telescope’s already impressive suite of sophisticated instrumentation. The VLT is located in the ultra-dry high-altitude climes of the Atacama Desert in Chile.

In the observation above, an ‘Eye of Sauron‘-like dust ring surrounding the star HR 4796A in the southern constellation of Centaurus, a testament to the sheer power of the multiple technique SPHIRES will use to acquire precision views of directly-imaged exoplanets.

The biggest problem with trying to directly image a world orbiting close to its parent star is that of glare; stars are many magnitudes brighter that the reflected light from its orbiting exoplanet, so how the heck are you supposed to gain enough contrast between the bright star and exoplanet to resolve the two? The SPHIRES instrument is using a combination of three sophisticated techniques to remove a star’s glare and zero-in on its exoplanetary targets.

This infrared image of Saturn’s largest moon, Titan, was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014.
ESO 
The first technique, known as adaptive optics, is employed by the VLT itself. By firing a laser into the Earth’s atmosphere during the observation, a gauge on the turbulence in the upper atmospheric gases can be measured and the effects of which can be removed from the imagery. Any blurriness caused by our thick atmosphere can be adjusted for.

Next up is a precision coronograph inside the instrument that blocks the light from the target star. By doing this, any glare can be removed and any exoplanet in orbit may be bright enough to spot.

But the third technique, which really teases out any exoplanet signal, is the detection of different polarizations of light from the star system. The polarization of infrared light being generated by the star and the infrared glow from the exoplanet are very subtle. SPHIRES can differentiate between the two, thereby further boosting the observation’s contrast.

“SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!” said Jean-Luc Beuzit, of the Institut de Planétologie et d’Astrophysique de Grenoble, France and Principal Investigator of SPHERE, in an ESO press release.

The speed and sheer power of SPHIRES will be an obvious boon to astronomers zooming in on distant exoplanets, aiding our understanding of these strange new worlds.


The star HR 7581 (Iota Sgr) was observed in SPHERE survey mode (parallel observation in the near infrared with the dual imaging camera and the integral field spectrograph ). A very low mass star, more than 4000 times fainter that its parent star, was discovered orbiting Iota Sgr at a tiny separation of 0.24". This is a vital demonstration of the power of SPHERE to image faint objects very close to bright ones.
ESO

View Article Here   Read More

Astronomers Find Massive Exoplanet With Four Parent Stars

Artist rendering of the system 30 Ari with its exoplanet and four stars. Excerpt from techtimes.com By Dianne Depra  Researchers seeking to study the complexities of exoplanets with multiple stars have found a new system with four. Cal...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑