Tag: description (page 1 of 3)

Marina Jacobi – 11 Dimensional Beings – February-10-2017

View Article Here   Read More

December Closing down making choices by Meline Portia Lafont December 9 2016

View Article Here   Read More

October Swirls by Meline Portia Lafont October 3, 2016

View Article Here   Read More

November 11/11 Gateway Space for Sacred codes and the inner journey Meline Portia Lafont

View Article Here   Read More

Back to the Beginning – Suzanne Lie – September-08-2016

View Article Here   Read More

Study says the universe may be a hologram






Holograms are two-dimensional pictures that appear to the human eye as three-dimensional objects. Some scientists believe that our universe may behave similarly, existing as a sort of all-encompassing hologram.
As explained by Nature World News, “a mathematical description of the Universe actually requires one fewer dimension than it seems” according to the “holographic principle,” which would indicate that what appears to be a 3-D universe may actually “just be the image of 2-D processes on a huge cosmic horizon.”
Prior to this study, scientists looked into this holographic principle by applying their calculations to a universe presenting Anti de Sitter space. Anti de Sitter is the term used to describe space as having a hyperbolic shape, much like a saddle. This hyperbolic space shape behaves, mathematically, as special relativity would predict.
Special relativity is a theory put forth by Albert Einstein to describe the relationship between space and time, and is especially useful when studying very small particles moving at extreme speeds over cosmic distances. The concept of Anti de Sitter space assumes that spacetime itself is hyperbolic in its natural state, in the absence of matter or energy.
A team at the Vienne University of Technology looked at the holographic principle not in the usual Anti de Sitter space framework, but instead applied the principle to flat spacetime, as represents our physical universe.“Our Universe, in contrast, is quite flat – and on astronomic distances, it has positive curvature,” team member Daniel Grumiller said in a statement.
The team created several gravitational theories that apply to flat space to see if calculations regarding quantum gravity would indicate a holographic description as has occurred in former calculations with theories applied to Anti de Sitter space.
“If quantum gravity in a flat space allows for a holographic description by a standard quantum theory, then there must be physical quantities, which can be calculated in both theories – and the results must agree,” Grumiller said.
The team found that the amount of quantum entanglement required for gravitational theory models expressed the same value in flat quantum gravity as in a low dimensional field theory, showing that the theory of a holographic universe can be successfully applied to the reality of the relatively flat field of spacetime evident in our universe.
“This calculation affirms our assumption that the holographic principle can also be realized in flat spaces. It is evidence for the validity of this correspondence in our universe” team member Max Riegler said.
The results were published in the journal Physical Review Letters.


View Article Here   Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here   Read More

SpaceX video demonstrates the future of space launches ~ Video

When Falcon Heavy lifts off later this year, it will be the most powerful operational rocket in the world by a factor of two. Thrust at liftoff is equal to approximately eighteen 747 aircraft operating simultaneously. Excerpt from csmonitor.com...

View Article Here   Read More

A Physicist’s Explanation of Why the Soul May Exist







By Tara Maclsaac
Excerpt from
theepochtimes.com
 Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf
Dr. Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf



Henry P. Stapp is a theoretical physicist at the University of California–Berkeley who worked with some of the founding fathers of quantum mechanics. He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

It is not true to say belief in the soul is unscientific, according to Stapp. Here the word “soul” refers to a personality independent of the brain or the rest of the human body that can survive beyond death.  In his paper, “Compatibility of Contemporary Physical Theory With Personality Survival,” he wrote: “Strong doubts about personality survival based solely on the belief that postmortem survival is incompatible with the laws of physics are unfounded.”
He works with the Copenhagen interpretation of quantum mechanics—more or less the interpretation used by some of the founders of quantum mechanics, Niels Bohr and Werner Heisenberg. Even Bohr and Heisenberg had some disagreements on how quantum mechanics works, and understandings of the theory since that time have also been diverse. Stapp’s paper on the Copenhagen interpretation has been influential. It was written in the 1970s and Heisenberg wrote an appendix for it. 

Stapp noted of his own concepts: “There has been no hint in my previous descriptions (or conception) of this orthodox quantum mechanics of any notion of personality survival.”

Why Quantum Theory Could Hint at Life After Death

Stapp explains that the founders of quantum theory required scientists to essentially cut the world into two parts. Above the cut, classical mathematics could describe the physical processes empirically experienced. Below the cut, quantum mathematics describes a realm “which does not entail complete physical determinism.”

Of this realm below the cut, Stapp wrote: “One generally finds that the evolved state of the system below the cut cannot be matched to any conceivable classical description of the properties visible to observers.”

So how do scientists observe the invisible? They choose particular properties of the quantum system and set up apparatus to view their effects on the physical processes “above the cut.”

The key is the experimenter’s choice. When working with the quantum system, the observer’s choice has been shown to physically impact what manifests and can be observed above the cut. 

Stapp cited Bohr’s analogy for this interaction between a scientist and his experiment results: “[It's like] a blind man with a cane: when the cane is held loosely, the boundary between the person and the external world is the divide between hand and cane; but when held tightly the cane becomes part of the probing self: the person feels that he himself extends to the tip of the cane.”

The physical and mental are connected in a dynamic way. In terms of the relationship between mind and brain, it seems the observer can hold in place a chosen brain activity that would otherwise be fleeting. This is a choice similar to the choice a scientist makes when deciding which properties of the quantum system to study. 

The quantum explanation of how the mind and brain can be separate or different, yet connected by the laws of physics “is a welcome revelation,” wrote Stapp. “It solves a problem that has plagued both science and philosophy for centuries—the imagined science-mandated need either to equate mind with brain, or to make the brain dynamically independent of the mind.”

View Article Here   Read More

New EAGLE Simulation Shows Galaxies as They Really Are ~ Video


The EAGLE simulation of the universe generates a more accurate picture of galaxies than any simulation of this size before it.



Excerpt from space.com

Galaxies come in all different shapes and sizes, and a massive new simulation of the universe has captured that galactic variety with more accuracy than any simulation before it, according to a new study.

Using a simulation called EAGLE (Evolution and Assembly of GaLaxies and their Environments), researchers from multiple institutes in Europe have cooked up a dazzling simulation of the universe that contains tens of thousands of galaxies.



A sample of the new simulation can be seen in the video above. It shows the evolution of the universe in a region 25 megaparsecs cubed (about 81 million light years).



"This is really a staggering success, I think it's fair to say," Rob Crain from Liverpool John Moores University and a member of the group that built EAGLE, told Space.com. The researchers are part of a collaboration called the Virgo Consortium for Cosmological Supercomputer Simulations. "Go to our previous generation of simulations, and the galaxies all look like big spherical blobs. Now they form disks and bars and irregular galaxies and different types of ellipticals."

A computer simulation is like a recipe for the universe. Scientists have to start with a list of ingredients and instructions — which actually means a description of the physics that underlie the current universe. While many simulations can recreate the major cosmic ingredients (like stars and galaxies), the subtleties are harder to achieve (like the shape, mass and distribution of those stars and galaxies).

The bottom right corner of the screen shows the time after the Big Bang (denoted by "t"). In the early universe, matter is dispersed and hazy, but gradually coalesces into a sort of web, with long strands of material connecting nodes where galaxies are clustered. At 1:06, the simulation starts again from the beginning and shows the three major components of the model: dark matter (labeled as CDM), gas (the red globs are gas clouds where stars are often born), and stars. The full EAGLE simulation contains an area 100 megaparsecs cubed.

One goal of the EAGLE group was to produce a simulation large enough that it contained all types of galaxies seen in the universe. This allows the researchers to find out if the physics they programmed into EAGLE are accurate for all galaxies, and if they produce the correct number of galaxies in the universe.




Schaye said the picture of the universe created by the EAGLE simulation "is not perfect, but for astronomers the level of agreement is very impressive. It seems we have the main ingredients in place."

View Article Here   Read More

Opening of the Box

Ihave been contacted by a certain benefactor who is willing to donate considerable funds to sponsor projects that are supporting the Lightworkers and Light forces as we are approaching the planetary liberation. This charitable account is an ongoing fun...

View Article Here   Read More

A pie on Mars? Bizarre structure baffles scientists

NASA's Mars Reconnaissance Orbiter has snapped an image of a mysterious circular landform that scientists say could be volcanic in origin.Excerpt from csmonitor.comA NASA Mars probe has photographed a strange Red Planet landform that resembles a fres...

View Article Here   Read More

Discovery Of Vast Buried Canyon In Tibet Has Scientists Buzzing

The Yarlung Tsangpo Valley in TibetExcerpt from huffingtonpost.comResearchers have made a surprising discovery in Tibet, unearthing an ancient canyon buried deep under sediment along the Yarlung Tsangpo River in the southern part of the country. The ca...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑