Tag: difficulties (page 1 of 3)

NEW NESARA REPUBLIC INEVITABLE! Sheldan Nidle April 25 2017 Galactic Federation of Light

View Article Here   Read More

Judas Iscariot via Ann Dahlberg 21-12-2016

View Article Here   Read More

Archangel Raphael-Transitions of Healing – October-28-2016

View Article Here   Read More

How Can Perception Of Order Of Difficulties Be Avoided? – Episode II

How Can Perception Of Order Of Difficulties Be Avoided?The Power Of Mind To HealEpisode IIThe Manual for Teachers Serieswww.themasterteacher.tv

View Article Here   Read More

How Can Perception Of Order Of Difficulties Be Avoided? – Episode I

How Can Perception Of Order Of Difficulties Be Avoided?The Power Of Mind To HealEpisode IThe Manual for Teachers Serieswww.themasterteacher.tv

View Article Here   Read More

Gaia Portal October 28 2015 Galactic Federation of Light

View Article Here   Read More

Desperately Seeking ET: Fermi’s Paradox Turns 65 ~ Part 2

Excerpt from huffingtonpost.comIntroductionWhy is it so hard to find ET? After 50 years of searching, the SETI project has so far found nothing. In the latest development, on April 14, 2015 Penn State researchers announced that after searching through...

View Article Here   Read More

How Your Mind Affects Your Body

Excerpt from huffingtonpost.comWe are at last beginning to show that there is an intimate and dynamic relationship between what is going on with our feelings and thoughts and what happens in the body. A Time magazine special showed that happiness, h...

View Article Here   Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here   Read More

Nibiru? Solar system may have Planet X & Planet Y

 




Scientists have postulated the existence of possibly two undiscovered planets beyond the orbit of Neptune to explain discrepancies in the orbits of extreme trans-Neptunian objects (ETNO). The objects have orbits that take them beyond the orbit of the planet Neptune.

Theory predicts that they be randomly distributed and that their orbits must have a semi-major axis with a value around 150 AU; an orbital inclination of nearly zero degrees; and an angle of perihelion, the point in the object’s orbit at which it is closest to the Sun, of zero to 180 degrees.

However, a dozen ETNO do not fit these orbital criteria. These objects have semi-major axis values of 150 to 525 AU, orbital inclinations of around 20 degrees, and angles of perihelion far from 180 degrees.

According to a statement, a new study by astrophysicists at the Complutense University of Madrid (UCM) and University of Cambridge have calculated that these orbital discrepancies could be explained by the existence of at least two additional planets beyond the orbits of Neptune and dwarf planet Pluto. Their study suggests that the gravitational pulls of those two planets must be disturbing the orbits of some smaller ETNO.

However, there are two difficulties with the hypothesis. One is that current models of the formation of our solar system do not allow for additional planets beyond Neptune. Secondly, the team’s sample size is very small, only 13 objects. However, additional results are in the pipeline, which will expand the sample.

“This excess of objects with unexpected orbital parameters makes us believe that some invisible forces are altering the distribution of the orbital elements of the ETNO and we consider that the most probable explanation is that other unknown planets exist beyond Neptune and Pluto,” said Carlos de la Fuente Marcos of UCM and lead author on the study.

The new findings have been published in two papers published in the journal Monthly Notices of the Royal Astronomical Society Letters.

View Article Here   Read More

Be Your Own Therapist ~ Tibetan Buddhist nun Robina Courtin ~ Video

We spend our lives being seduced by the outside world, believing without question that happiness and suffering come from "out there." In reality, Buddhist teachings explain that they come from the way we perceive and interpret things, not the things...

View Article Here   Read More

Are we sending aliens the right messages?


(Nasa)


bbc.com

Artist Carrie Paterson has long dreamed of beaming messages far out to the emptiness of space. Except her messages would have an extra dimension – smell.

By broadcasting formulae of aromatic chemicals, she says, aliens could reconstruct all sorts of whiffs that help to define life on Earth: animal blood and faeces, sweet floral and citrus scents or benzene to show our global dependence on the car. This way intelligent life forms on distant planets who may not see or hear as we do, says Paterson, could explore us through smell, one of the most primitive and ubiquitous senses of all.
(Wikipedia)
It is nearly 40 years since the Arecibo facility sent messages out into space (Wikipedia)

Her idea is only the latest in a list of attempts to hail intelligent life outside of the Solar System. Forty years ago this month, the Arecibo radio telescope in Puerto Rico sent an iconic picture message into space – and we’ve arguably been broadcasting to aliens ever since we invented TV and radio.

However in recent years, astronomers, artists, linguists and anthropologists have been converging on the idea that creating comprehensible messages for aliens is much harder than it seems. This week, Paterson and others discussed the difficulties of talking to our cosmic neighbours at a conference called Communicating Across the Cosmos, held by Seti (Search for Extraterrestrial Intelligence). It seems our traditional ways of communicating through pictures and language may well be unintelligible – or worse, be catastrophically misconstrued. So how should we be talking to ET?

Lost in translation?

We have always wanted to send messages about humanity beyond the planet. According to Albert Harrison, a space psychologist and author of Starstruck: Cosmic Visions in Science, Religion and Folklore, the first serious designs for contacting alien life appeared two centuries ago, though they never got off the ground.


In the 1800s, mathematician Carl Gauss proposed cutting down lines of trees in a densely forested area and replanting the strips with wheat or rye, Harrison wrote in his book. “The contrasting colours would form a giant triangle and three squares known as a Pythagoras figure which could be seen from the Moon or even Mars.” Not long after, the astronomer Joseph von Littrow proposed creating huge water-filled channels topped with kerosene. “Igniting them at night showed geometric patterns such as triangles that Martians would interpret as a sign of intelligence, not nature.”

But in the 20th Century, we began to broadcast in earnest. The message sent by Arecibo hoped to make first contact on its 21,000 year journey to the edge of the Milky Way. The sketches it contained, made from just 1,679 digital bits, look cute to us today, very much of the ‘Pong’ video game generation.  Just before then, Nasa’s Pioneer 10 and 11 space probes each carried a metal calling card bolted onto their frame with symbols and drawings on the plaque, showing a naked man and woman.

Yet it’s possible that these kinds of message may turn out to be incomprehensible to aliens; they might find it as cryptic as we find Stone Age etchings.

Antique tech

“Linear drawings of a male and a female homo sapiens are legible to contemporary humans,” says Marek Kultys, a London-based science communications designer. ”But the interceptors of Pioneer 10 could well assume we are made of several separate body parts (i.e. faces, hair and the man’s chest drawn as a separate closed shapes) and our body surface is home for long worm-like beings (the single lines defining knees, abdomens or collarbones.).”

Man-made tech may also be an issue. The most basic requirement for understanding Voyager’s Golden Record, launched 35 years ago and now way out beyond Pluto, is a record player. Aliens able to play it at 16 and 2/3 revolutions a minute will hear audio greetings in 55 world languages, including a message of ‘Peace and Friendship’ from former United Nations Secretary General Kurt Waldheim. But how many Earthlings today have record players, let alone extraterrestrials?
(Nasa)
Our sights and sounds of Earth might be unintelligible to an alien audience (Nasa)



Time capsule

Inevitably such messages become outdated too, like time capsules. Consider the case of the Oglethorpe Atlanta Crypt of Civilization – a time capsule sealed on Earth in 1940, complete with a dry martini and a poster of Gone With the Wind. It was intended as a snapshot of 20th Century life for future humans, not aliens, but like an intergalactic message, may only give a limited picture to future generations. When, in 61,000 years, the Oglethorpe time capsule is opened, would Gone With The Wind have stood the test of time?


(Nasa)
This message was taken into the stars by Pioneer - but we have no idea if aliens would be able to understand it (Nasa)

Kultys argues that all these factors should be taken into account when we calculate the likelihood of communicating with intelligent life. The astronomer Frank Drake’s famous equation allows anyone to calculate how many alien species are, based on likely values of seven different factors. At a UK Royal Society meeting in 2010 Drake estimated there are roughly 10,000 detectable civilisations in the galaxy. Yet Kultys points out that we should also factor in how many aliens are using the same channel of communications as us, are as willing to contact us as we are them, whose language we hope to learn, and who are physically similar to us.

Another barrier we might consider is the long distance nature of trans-cosmos communication. It means that many years ‒ even a thousand ‒ could pass between sending a message and receiving a reply. Paterson sees romance in that. “Our hope for communication with another intelligent civilisation has a melancholic aspect to it. 
We are on an island in a vast, dark space. Imagine if communication… became like an exchange of perfumed love letters with the quiet agony of expectation... Will we meet? Will we be as the other imagined? Will the other be able to understand us?”

Ready for an answer?

Anthropologist John Traphagan of the University of Texas in Austin has been asking the same question, though his view is more cautious. "When it comes to ET, you'll get a signal of some kind; not much information and very long periods between ‘Hi, how are you?’ and whatever comes back. We may just shrug our shoulders and say 'This is boring’, and soon forget about it or, if the time lag wasn't too long, we might use the minimal information we get from our slow-speed conversation to invent what we think they're like and invent a kind concept of what they're after.”

(20th Century Fox)
The aliens in Independence Day (1996) did not come in peace (20th Century Fox)
While we have been sending out messages, we have not been preparing the planet for what happens when we get an interstellar return call. First contact could cause global panic. We might assume those answering are bent on galactic domination or, perhaps less likely, that they are peaceful when in fact they’re nasty.

Consider how easy it is to mess up human-to-human communications; I got Traphagan’s first name wrong when I e-mailed him for this article. An apology within minutes cleared up the confusion, yet if he had been an alien anthropologist on some distant planet it would have taken much longer to fix. He later confessed: "I could have thought this is a snooty English journalist and our conversation might never have happened."

Even if Earth’s interstellar messaging committees weeded out the typos, cultural gaffes are always a possibility. These can only be avoided by understanding the alien’s culture – something that’s not easy to do, especially when you’ve never met those you’re communicating with.

Rosy picture

So, what is the best way to communicate? This is still up for grabs – perhaps it’s via smell, or some other technique we haven’t discovered yet. Clearly, creating a message that is timeless, free of cultural bias and universally comprehensible would be no mean feat.


But for starters, being honest about who we are is important if we want to have an extra-terrestrial dialogue lasting centuries, says Douglas Vakoch, director of interstellar message composition at Seti. (Otherwise, intelligent civilisations who’ve decoded our radio and TV signals might smell a rat.)

(Nasa)
The golden discs aboard the Voyager spacecraft require aliens to understand how to play a record (Nasa)

“Let's not try to hide our shortcomings,” says Vakoch. “The message we should send to another world is straightforward: We are a young civilisation, in the throes of our technological adolescence. We're facing a lot of problems here on Earth, and we're not even sure that we'll be around as a species when their reply comes in. But in spite of all of these challenges, we humans also have hope – especially hope in ourselves."


Yet ultimately what matters, says Paterson, is that they stop and consider the beings who sent them a message; the people who wanted to say: “Here are some important things. Here’s our DNA, here is some maths and universal physics. And here is our longing and desire to say “I’m like you, but I’m different.”

View Article Here   Read More

Safety Board Cites Improper Pilot Command in Virgin Galactic Crash



Excerpt from

wsj.com By Andy Pasztor


Accident Sets Back Ambitious Timetables for Space Tourism and Other Commercial Ventures.

MOJAVE, Calif.—An improper co-pilot command preceded Friday’s in-flight breakup of Virgin Galactic LLC’s rocket, according to investigators, when movable tail surfaces deployed prematurely.

Two seconds after the surfaces moved—with SpaceShip Two traveling faster than the speed of sound—“we saw disintegration” of the 60-foot-long experimental craft, according to Christopher Hart, acting chairman of the National Transportation Safety Board.
The co-pilot died in the accident, and the other pilot was severely injured.

The sequence of events released by the NTSB indicates that the rocket ship separated normally from its carrier and the propulsion system worked normally until the tail surfaces, called feathers, deployed.

The disaster, coupled with the explosion earlier last week of an unmanned Orbital Sciences Corp. cargo rocket destined for the international space station, has set back the ambitious timetables embraced by space-tourism proponents and other commercial ventures seeking to get beyond Earth’s atmosphere. Some in the industry predict difficulties obtaining additional private-equity funding for startup ventures, while others worry about nagging propulsion problems and public confidence. 

“Recent events bring home the reality that we’re in a very dangerous phase” of pursuing space activities relying on the private sector, said Howard McCurdy, a space history expert at American University. Launching rockets and vehicles “is always a very risky business,” he said, and no amount of ground tests “can duplicate the aerodynamic stresses and other conditions” of actual space flight.

Virgin Galactic had initially hoped to start commercial service by 2008, but persistent development and testing challenges have repeatedly pushed back the date. Before the accident, company officials were talking about inaugurating service by early 2015, with company founder Sir Richard Branson and members of his family slated to take the first ride. Now, the initial launch date is uncertain because the probe is likely to stretch for many months.

How much the fledgling industry is set back may depend on what investigators determine caused the two accidents. Some industry officials and analysts predict that Virgin Galactic’s fatal mishap may have a long-term residual impact as dramatic as the fallout from the 2003 in-flight breakup of the space shuttle Columbia, which killed all seven crew members. 

“It’s clearly bad news for commercial space,” said one veteran industry official affiliated with another commercial space company. “But from the beginning, people recognized a fatal event on some spacecraft was inevitable.” 

Earlier Sunday, George Whitesides, Virgin Galactic’s chief executive, defended the company’s safety procedures and indicated that the rocket motor on the craft that crashed was a derivative of a design that had been successfully tested on the ground and in the air for years.

“At the end of the day, safety of our system is paramount,” he said in an interview. “The engineers and the flight-test team have the final authority” to determine when and how experimental flights are conducted.

Virgin Galactic has pledged to cooperate fully with the probe, which also includes experts from the Federal Aviation Administration and Scaled Composites, a Northrop Grumman Corp. unit that designed and is testing the Virgin crafts—SpaceShip Two and its carrier aircraft, dubbed WhiteKnight Two. The pilots on Friday’s test flight were Scaled Composites employees.

Mr. Whitesides, a former senior NASA official, is in charge of the roughly $500 million project intended to take passengers on suborbital flights for more than $200,000 each. He said last week’s test flight wasn’t rushed. “I strongly reject any assertion that something pushed us to fly when we weren’t ready,” he said.

SpaceShip Two’s fuel tanks and engine were recovered largely intact. The hybrid motor fueled by nitrous oxide and a plastic-based compound was found some 5 miles from where large sections of the tail first hit the ground. Sections of the fuselage, fuel tanks and cockpit were located some distance from the engine itself.

The condition and location of various pieces of the wreckage suggest there was no propulsion-system explosion before the craft started coming apart miles above California’s Mojave Desert, according to air-safety experts who have reviewed the images.

“It’s hard to figure how an engine explosion” could produce such a debris field, said John Cox, an industry consultant and former accident investigator for the Air Line Pilots Association.

The rocket ship was equipped with six onboard video cameras and many sensors feeding data to the ground. The flight also was followed by radar, and was filmed from the ground and by a plane flying close by.

SpaceShip Two’s rocket motor received considerable attention immediately after the accident. Industry officials and news reports concentrated on the fact that it was burning a new type of plastic-based fuel for the first time in flight.

The new engine-fuel combination was tested on the ground about a dozen times in the months leading up to Friday’s flight.

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑