Tag: extraterrestrial life (page 1 of 2)

Sea Salt Discovered on Jupiter’s Moon Europa

This image shows a view of the trailing hemisphere of Jupiter's ice-covered satellite, Europa, in approximate natural color. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.   Image via Galileo spacecraft in 1996.

Europa is thought to have a subsurface ocean. Salt from this hidden sea might be emerging in long fractures visible in the moon’s crust.

Excerpt earthsky.org

Laboratory experiments have lead to new information about the chemical composition of the mysterious dark material in the long, dark fractures on the surface of Europa, a large moon of Jupiter. Researchers at NASA’s Jet Propulsion Laboratory (JPL) mimicked conditions on Europa’s surface. They now say that the dark material is discolored salt, likely sea salt from below the moon’s icy crust. The journal Geological Research Letters published their study on May 15, 2015.

The scientists say this new insight is important in considering whether this icy moon might be hospitable for extraterrestrial life. The life question is a key one for Europa, since this world is believed to have a liquid ocean beneath its crust. The presence of sea salt on Europa’s surface suggests the ocean is interacting with its rocky seafloor.

Scientists have been intensely curious about Europa since Galileo discovered it in 1610. In recent years, they’ve puzzled over the dark material coating the long, linear fractures on Europa’s observable surface. The material was associated with young terrain on this moon of Jupiter, suggesting that it had erupted from within Europa.
However, the chemical composition of the dark material remained elusive, until now.
Planetary scientist Kevin Hand at JPL led the new study. He said in a statement:
If it’s just salt from the ocean below, that would be a simple and elegant solution for what the dark, mysterious material is.
Europa is immersed radiation from Jupiter’s powerful magnetic field, causing high-powered electrons to slam into the moon’s surface. Hand and his team created a laboratory test that mimicked the conditions of Europa’s temperature, pressure, and radiation exposure. They tested a variety of samples including common salt – sodium chloride – and salt water in a vacuum chamber at Europa’s chilly surface temperature of minus 280 degrees Fahrenheit (minus 173 Celsius). They also bombarded the samples with an electron beam to imitate Jupiter’s influence. 

After several hours – a time period corresponding to over a century on Europa, the researchers said – the salt samples were observed to go from white to a yellowish brown, the color similar to the features on the icy moon. Hand said:
This work tells us the chemical signature of radiation-baked sodium chloride is a compelling match to spacecraft data for Europa’s mystery material.
A “Europa-in-a-can” laboratory setup at NASA-JPL mimics conditions of temperature, near vacuum and heavy radiation on the surface of Jupiter’s icy moon. Image via NASA/JPL-Caltech

A close-up of salt grains discolored by radiation following exposure in a
Close-up of salt grains discolored by radiation following exposure in a “Europa-in-a-can” test setup at JPL. Image via NASA/JPL-Caltech

Until now, telescopic observations have only shown glimpses of irradiated salts. No telescope on Earth can observe Europa’s surface with enough resolution to identify them with certainty. Researchers suggest additional spacecraft observation to gather more evidence.
A visit to this icy world would help answer the most tantalizing questions about Europa. Long believed to have a liquid ocean of salt water below its icy surface, this moon continues to display promising conditions for extraterrestrial life. 

As Europa orbits Jupiter, it experiences strong tidal forces similar to Earth and the Moon. These forces from Jupiter and the other Jovian moons cause Europa to flex and stretch, which creates heat, and results in Europa having a warm internal temperature than it would with just the heat from the Sun alone. 

Recent observable geological activity also creates strong evidence that the subsurface ocean interacts directly with Europa’s rocky interior, making geothermal vents, like those in Earth’s oceans, a strong possibility as well. 

These hydrothermal vent ecosystems on Earth thrive with no energy from the sun. Bacteria, shrimp and crustaceans have all been observed in these extreme environments, surviving on what researchers have deemed chemosythesis.

With Europa’s enormous amount of liquid salt water, essential chemical elements and geological activity, this long discovered icy moon appears to be one of the solar systems most promising locations for habitable requirements for life. 

However, until a devoted spacecraft visit’s, nothing beyond hopeful speculation can be proven, the researchers say.

Bottom line: Researchers at NASA’s Jet Propulsion Laboratory created laboratory conditions that mimicked those on Jupiter’s large moon Europa, to learn the chemical compositions of the material in long, dark fractures in the moon’s surface. They now believe this material is sea salt, which has emerged to Europa’s surface from its liquid ocean below.

View Article Here   Read More

Desperately Seeking ET: Fermi’s Paradox Turns 65 ~ Part 2

Excerpt from huffingtonpost.comIntroductionWhy is it so hard to find ET? After 50 years of searching, the SETI project has so far found nothing. In the latest development, on April 14, 2015 Penn State researchers announced that after searching through...

View Article Here   Read More

Desperately Seeking Extraterrestrials ~ Fermi’s Paradox Turns 65 ~ Part 1

Excerpt from huffingtonpost.comIntroduction 65 years ago, in 1950, while having lunch with colleagues Edward Teller and Herbert York, Nobel physicist Enrico Fermi suddenly blurted out, "Where is everybody?" His question is now known as Fermi's p...

View Article Here   Read More

Guiding Our Search for Life on Other Earths

The James Webb Telescope

Excerpt from space.com

A telescope will soon allow astronomers to probe the atmosphere of Earthlike exoplanets for signs of life. To prepare, astronomer Lisa Kaltenegger and her team are modeling the atmospheric fingerprints for hundreds of potential alien worlds. Here's how:
The James Webb Space Telescope, set to launch in 2018, will usher a new era in our search for life beyond Earth. With its 6.5-meter mirror, the long-awaited successor to Hubble will be large enough to detect potential biosignatures in the atmosphere of Earthlike planets orbiting nearby stars.
And we may soon find a treasure-trove of such worlds. The forthcoming exoplanet hunter TESS (Transiting Exoplanet Survey Satellite), set to launch in 2017, will scout the entire sky for planetary systems close to ours. (The current Kepler mission focuses on more distant stars, between 600 and 3,000 light-years from Earth.) 

Astronomer Lisa Kaltenegger

While TESS will allow for the brief detection of new planets, the larger James Webb will follow up on select candidates and provide clues about their atmospheric composition. But the work will be difficult and require a lot of telescope time.
"We're expecting to find thousands of new planets with TESS, so we'll need to select our best targets for follow-up study with the Webb telescope," says Lisa Kaltenegger, an astronomer at Cornell University and co-investigator on the TESS team.
To prepare, Kaltenegger and her team at Cornell's Institute for Pale Blue Dots are building a database of atmospheric fingerprints for hundreds of potential alien worlds. The models will then be used as "ID cards" to guide the study of exoplanet atmospheres with the Webb and other future large telescopes.
Kaltenegger described her approach in a talk for the NASA Astrobiology Institute's Director Seminar Series last December.
"For the first time in human history, we have the technology to find and characterize other worlds," she says. "And there's a lot to learn."

Detecting life from space  

In its 1990 flyby of Earth, the Galileo spacecraft took a spectrum of sunlight filtered through our planet's atmosphere. In a 1993 paper in the journal Nature, astronomer Carl Sagan analyzed that data and found a large amount of oxygen together with methane — a telltale sign of life on Earth. These observations established a control experiment for the search of extraterrestrial life by modern spacecraft.
"The spectrum of a planet is like a chemical fingerprint," Kaltenegger says. "This gives us the key to explore alien worlds light years away."
Current telescopes have picked up the spectra of giant, Jupiter-like exoplanets. But the telescopes are not large enough to do so for smaller, Earth-like worlds. The James Webb telescope will be our first shot at studying the atmospheres of these potentially habitable worlds.
Some forthcoming ground-based telescopes — including the Giant Magellan Telescope (GMT), planned for completion in 2020, and the European Extremely Large Telescope (E-ELT), scheduled for first light in 2024 — may also be able to contribute to that task. [The Largest Telescopes on Earth: How They Compare]
And with the expected discovery by TESS of thousands of nearby exoplanets, the James Webb and other large telescopes will have plenty of potential targets to study. Another forthcoming planet hunter, the Planetary Transits and Oscillations of stars (PLATO), a planned European Space Agency mission scheduled for launch around 2022-2024, will contribute even more candidates.
However, observation time for follow-up studies will be costly and limited.
"It will take hundreds of hours of observation to see atmospheric signatures with the Webb telescope," Kaltenegger says. "So we'll have to pick our targets carefully."

Giant Magellan Telescope
Set to see its first light in 2021, The Giant Magellan Telescope will be the world’s largest telescope.

Getting a head start

To guide that process, Kaltenegger and her team are putting together a database of atmospheric fingerprints of potential alien worlds. "The models are tools that can teach us how to observe and help us prioritize targets," she says.
To start, they have modeled the chemical fingerprint of Earth over geological time. Our planet's atmosphere has evolved over time, with different life forms producing and consuming various gases. These models may give astronomers some insight into a planet's evolutionary stage.
Other models take into consideration the effects of a host of factors on the chemical signatures — including water, clouds, atmospheric thickness, geological cycles, brightness of the parent star, and even the presence of different extremophiles.
"It's important to do this wide range of modeling right now," Kaltenegger said, "so we're not too startled if we detect something unexpected. A wide parameter space can allow us to figure out if we might have a combination of these environments."
She added: "It can also help us refine our modeling as fast as possible, and decide if more measurements are needed while the telescope is still in space. It's basically a stepping-stone, so we don't have to wait until we get our first measurements to understand what we are seeing. Still, we'll likely find things we never thought about in the first place."

A new research center

The spectral database is one of the main projects undertaken at the Institute for Pale Blue Dots, a new interdisciplinary research center founded in 2014 by Kaltenegger. The official inauguration will be held on May 9, 2015.
"The crux of the institute is the characterization of rocky, Earth-like planets in the habitable zone of nearby stars," Kaltenergger said. "It's a very interdisciplinary effort with people from astronomy, geology, atmospheric modeling, and hopefully biology."
She added: "One of the goal is to better understand what makes a planet a life-friendly habitat, and how we can detect that from light years away. We're on the verge of discovering other pale blue dots. And with Sagan's legacy, Cornell University is a really great home for an institute like that."

View Article Here   Read More

For the first time, scientists find complex organic molecules in an infant star system

Artist impression of the protoplanetary disk surrounding the young star MWC 480. ALMA has detected the complex organic molecule methyl cyanide in the outer reaches of the disk in the region where comets are believed to form. This is another indication that complex organic chemistry, and potentially the conditions necessary for life, is universal. (B. Saxton/NRAO/AUI/NSF)

Excerpt from washingtonpost.com

We're not special. Or our complex organic molecules aren't, anyway. And that's good news in the hunt for extraterrestrial life.

In a new study published Wednesday in Nature, astronomers found the first signs of the complex, carbon-based molecules that make life possible on Earth in a protoplanetary disk; the region where cosmic building blocks gather to create planets in a brand-new star system. The cyanides found there are essential to life as we know it: without them, there would be no proteins.

"We know when our own solar system was very young, it was rich in water and complex organics. We know that from observing comets," explained study author Karin Öberg, an assistant professor of astronomy at Harvard. Comets have kept the molecules of our solar system's early days locked up tight ever since, which is why scientists are so eager to study them for clues about Earth's formation. These comets show us that certain organic molecules were common in our solar system's pre-planetary days.

But this is the first time we've seen evidence of such molecules ready to seed another star system with planets that could support life.
"We're finding that we're not that special," Öberg said. "Other young solar systems in the making are also rich in the same volatiles, and in similar proportions."

And in this case, she said, being not-special is a great thing: If other solar systems formed just the way ours did, we can hope that they formed some kind of life, too.

Öberg and her colleagues found the molecules using the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope with some pretty sweet resolution. They spotted the complex organics as much as 15 billion kilometers from the star itself, which they believe is right smack dab in the middle of the system's comet-forming region. That means the organics could get locked away in comets, just as the ones in our solar system were, and go out to seed future planets with them (as some believe was the case with Earth).

"It was kind of a chance discovery, because we weren't targeting this specific molecule," Öberg said. So she and her team need to go back and look more systematically. She also hopes they'll be able to find more systems to look at. The star they've observed -- MWC 480, located some 455 light-years away in the Taurus star-forming region -- is twice the mass of the sun, so they also hope to find some that are more similar to our host star.

 "We of course want to know whether this is a really common thing or if we just lucked out on this one," Öberg said.

View Article Here   Read More

Chances of Exoplanet Life ‘Impossible’? Or ‘100 percent’?

Kepler’s Exoplanets: A map of the locations of exoplanets, of various masses, in the Kepler field of view. 1,235 candidates are plotted (NASA/Wendy Stenzel)


Just in case you haven’t heard, our galaxy appears to be teeming with small worlds, many of which are Earth-sized candidate exoplanets and dozens appear to be orbiting their parent stars in their “habitable zones.”

Before Wednesday’s Kepler announcement, we knew of just over 500 exoplanets orbiting stars in the Milky Way. Now the space telescope has added another 1,235 candidates to the tally — what a difference 24 hours makes.

Although this is very exciting, the key thing to remember is that we are talking about exoplanet candidates, which means Kepler has detected 1,235 exoplanet signals, but more work needs to be done (i.e. more observing time) to refine their orbits, masses and, critically, to find out whether they actually exist.

But, statistically speaking, a pattern is forming. Kepler has opened our eyes to the fact our galaxy is brimming with small worlds — some candidates approaching Mars-sized dimensions!

Earth-Brand™ Life

Before Kepler, plenty of Jupiter-sized worlds could be seen, but with its precision eye for spotting the tiniest of fluctuations of star brightness (as a small exoplanet passes between Kepler and the star), the space telescope has found that smaller exoplanets outnumber the larger gas giants.

Needless to say, all this talk of “Earth-sized” worlds (and the much-hyped “Earth-like” misnomer) has added fuel to the extraterrestrial life question: If there’s a preponderance of small exoplanets — some of which orbit within the “sweet-spot” of the habitable zones of their parent stars — could life as we know it (or Earth-Brand™ Life as I like to call it) also be thriving there?
Before I answer that question, let’s turn back the clock to Sept. 29, 2010, when, in the wake of the discovery of the exoplanet Gliese 581 g, Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, told Discovery News: “Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on [Gliese 581 g] are 100 percent. I have almost no doubt about it.”

Impossible? Or 100 Percent?

As it turns out, Gliese 581 g may not actually exist — an excellent example of the progress of science scrutinizing a candidate exoplanet in complex data sets as my Discovery News colleague Nicole Gugliucci discusses in “Gliese 581g and the Nature of Science” — but why was Vogt so certain that there was life on Gliese 581 g? Was he “wrong” to air this opinion?

Going to the opposite end of the spectrum, Howard Smith, an astrophysicist at Harvard University, made the headlines earlier this year when he announced, rather pessimistically, that aliens will unlikely exist on the extrasolar planets we are currently detecting.
“We have found that most other planets and solar systems are wildly different from our own. They are very hostile to life as we know it,” Smith told the UK’s Telegraph.

Smith made comparisons between our own solar system with the interesting HD 10180 system, located 127 light-years away. HD 10180 was famous for a short time as being the biggest star system beyond our own, containing five exoplanets (it has since been trumped by Kepler-11, a star system containing six exoplanets as showcased in Wednesday’s Kepler announcement).

One of HD 10180′s worlds is thought to be around 1.4 Earth-masses, making it the smallest detected exoplanet before yesterday. Alas, as Smith notes, that is where the similarities end; the “Earth-sized” world orbiting HD 10180 is too close to its star, meaning it is a roasted exoplanet where any atmosphere is blasted into space by the star’s powerful radiation and stellar winds.
The Harvard scientist even dismissed the future Kepler announcement, pointing out that upcoming reports of habitable exoplanets would be few and far between. “Extrasolar systems are far more diverse than we expected, and that means very few are likely to support life,” he said.

Both Right and Wrong

So what can we learn about the disparity between Vogt and Smith’s opinions about the potential for life on exoplanets, regardless of how “Earth-like” they may seem?

Critically, both points of view concern Earth-Brand™ Life (i.e. us and the life we know and understand). As we have no experience of any other kind of life (although the recent eruption of interest over arsenic-based life is hotly debated), it is only Earth-like life we can realistically discuss.

We could do a Stephen Hawking and say that all kinds of life is possible anywhere in the cosmos, but this is pure speculation. Science only has life on Earth to work with, so (practically speaking) it’s pointless to say a strange kind of alien lifeform could live on an exoplanet where the surface is molten rock and constantly bathed in extreme stellar radiation.

If we take Hawking’s word for it, Vogt was completely justified for being so certain about life existing on Gliese 581 g. What’s more, there’s no way we could prove he’s wrong!

But if you set the very tight limits on where we could find Earth-like life, we are suddenly left with very few exoplanet candidates that fit the bill. Also, just because an Earth-sized planet might be found in the habitable zone of its star, doesn’t mean it’s actually habitable. There are many more factors to consider. So, in this case, Smith’s pessimism is well placed.

Regardless, exoplanet science is in its infancy and the uncertainty with the “is there life?” question is a symptom of being on the “raggedy edge of science,” as Nicole would say. We simply do not know what it takes to make a world habitable for any kind of life (apart from Earth), but it is all too tempting to speculate as to whether a race of extraterrestrials, living on one of Kepler’s worlds, is pondering these same questions.

View Article Here   Read More

Earth To Aliens: Scientists Want To Send Messages To Extraterrestrial Intelligence Possibly Living On Exoplanets

Excerpt from techtimes.comExtraterrestrial research experts have said that now is the time to contact intelligent life on alien worlds.Leading figures behind the Search for Extraterrestrial Intelligence (Seti), which has been using radio telescop...

View Article Here   Read More

How Would the World Change If We Found Alien Life?

Excerpt from space.com
By by Elizabeth Howell

In 1938, Orson Welles narrated a radio broadcast of "War of the Worlds" as a series of simulated radio bulletins of what was happening in real time as Martians arrived on our home planet. The broadcast is widely remembered for creating public panic, although to what extent is hotly debated today.

Still, the incident serves as an illustration of what could happen when the first life beyond Earth is discovered. While scientists might be excited by the prospect, introducing the public, politicians and interest groups to the idea could take some time.

How extraterrestrial life would change our world view is a research interest of Steven Dick, who just completed a term as the Baruch S. Blumberg NASA/Library of Congress Chair of Astrobiology. The chair is jointly sponsored by the NASA Astrobiology Program and the John W. Kluge Center, at the Library of Congress. 

Dick is a former astronomer and historian at the United States Naval Observatory, a past chief historian for NASA, and has published several books concerning the discovery of life beyond Earth. To Dick, even the discovery of microbes would be a profound shift for science.

"If we found microbes, it would have an effect on science, especially biology, by universalizing biology," he said. "We only have one case of biology on Earth. It's all related. It's all DNA-based. If we found an independent example on Mars or Europa, we have a chance of forming a universal biology."

Dick points out that even the possibilities of extraterrestrial fossils could change our viewpoints, such as the ongoing discussion of ALH84001, a Martian meteorite found in Antarctica that erupted into public consciousness in 1996 after a Science article said structures inside of it could be linked to biological activity. The conclusion, which is still debated today, led to congressional hearings.

"I've done a book about discovery in astronomy, and it's an extended process," Dick pointed out. "It's not like you point your telescope and say, 'Oh, I made a discovery.' It's always an extended process: You have to detect something, you have to interpret it, and it takes a long time to understand it. As for extraterrestrial life, the Mars rock showed it could take an extended period of years to understand it."

ALH84001 Meteorite
The ALH84001 meteorite, which in a 1996 Science publication was speculated to be host to what could be ancient Martian fossils. That finding is still under dispute today.

Mayan decipherments

In his year at the Library of Congress, Dick spent time searching for historical examples (as well as historical analogies) of how humanity might deal with first contact with an extraterrestrial civilization. History shows that contact with new cultures can go in vastly different directions.

Hernan Cortes' treatment of the Aztecs is often cited as an example of how wrong first contact can go. But there were other efforts that were a little more mutually beneficial, although the outcomes were never perfect. Fur traders in Canada in the 1800s worked closely with Native Americans, for example, and the Chinese treasure fleet of the 15th Century successfully brought its home culture far beyond its borders, perhaps even to East Africa.

Even when both sides were trying hard to make communication work, there were barriers, noted Dick.

"The Jesuits had contact with Native Americans," he pointed out. "Certain concepts were difficult, like when they tried to get across the ideas of the soul and immortality."

A second look by the Mars Global Surveyor at the so-called Viking “Face on Mars” in Cydonia revealed a more ordinary-looking hill, showing that science is an extended process of discovery.

Indirect contact by way of radio communications through the Search for Extraterrestrial Intelligence (SETI), also illustrates the challenges of transmitting information across cultures. There is historical precedence for this, such as when Greek knowledge passed west through Arab translators in the 12th Century. This shows that it is possible for ideas to be revived, even from dead cultures, he said.

It's also quite possible that the language we receive across these indirect communications would be foreign to us. Even though mathematics is often cited as a universal language, Dick said there are actually two schools of thought. One theory is that there is, indeed, one kind of mathematics that is based on a Platonic idea, and the other theory is that mathematics is a construction of the culture that you are in. 

"There will be a decipherment process. It might be more like the Mayan decipherments," Dick said.

The ethics of contact

As Dick came to a greater understanding about the potential c impact of extraterrestrial intelligence, he invited other scholars to present their findings along with him. Dick chaired a two-day NASA/Library of Congress Astrobiology Symposium called "Preparing for Discovery," which was intended to address the impact of finding any kind of life beyond Earth, whether microbial or some kind of intelligent, multicellular life form.

The symposium participants discussed how to move beyond human-centered views of defining life, how to understand the philosophical and theological problems a discovery would bring, and how to help the public understand the implications of a discovery.

"There is also the question of what I call astro-ethics," Dick said. "How do you treat alien life? How do you treat it differently, ranging from microbes to intelligence? So we had a philosopher at our symposium talking about the moral status of non-human organisms, talking in relation to animals on Earth and what their status is in relation to us."

Dick plans to collect the lectures in a book for publication next year, but he also spent his time at the library gathering materials for a second book about how discovering life beyond Earth will revolutionize our thinking.

"It's very farsighted for NASA to fund a position like this," Dick added. "They have all their programs in astrobiology, they fund the scientists, but here they fund somebody to think about what the implications might be. It's a good idea to do this, to foresee what might happen before it occurs."

View Article Here   Read More

NASA To Speed Up Search For Alien Life On Europa

Excerpt from yibada.comWith a US$18.5 billion budget allocation in 2016 proposed by President Barack Obama in hand, NASA can finally launch the dream project it's been working on for the last 15 years. The allocation provides US$30 million to la...

View Article Here   Read More

The Best Bet for Alien Life May Be in Planetary Systems Very Different From Ours

Excerpt from wired.com

In the hunt for extraterrestrial life, scientists started by searching for a world orbiting a star just like the sun. After all, the steady warmth of that glowing yellow ball in the sky makes life on Earth possible.

But as astronomers continue to discover thousands of planets, they’re realizing that if (or when) we find signs of extraterrestrial life, chances are good that those aliens will orbit a star quite different from the sun—one that’s redder, cooler, and at a fraction of the sun’s size and mass. So in the quest for otherworldly life, many astronomers have set their sights on these small stars, known as red dwarfs or M dwarfs.

At first, planet-hunting astronomers didn’t care so much about M dwarfs. After the first planet outside the solar system was discovered in 1995, scientists began hunting for a true Earth twin: a rocky planet like Earth with an orbit like ours around a sun-like star. Indeed, the search for that kind of system drove astronomers through most of the 2000s, says astronomer Phil Muirhead of Boston University.

But then astronomers realized that it might be technically easier to find planets around M dwarfs. Detecting another planet is really hard, and scientists rely on two main methods. In the first, they look for a drop in a star’s brightness when a planet passes in front of it. In the second, astronomers measure the slight wobble of a star, caused by the gentle gravitational tug of an orbiting planet. With both of these techniques, the signal is stronger and easier to detect for a planet orbiting an M dwarf. A planet around an M dwarf also orbits more frequently, increasing the chances that astronomers will spot it.

M dwarfs got a big boost from the Kepler space telescope, which launched in 2008. By staring at small patch of the sky, the telescope searches for suddenly dimming stars when a planet passes in front of them. In doing so, the spacecraft discovered a glut of planets—more than 1,000 at the latest count—it found a lot of planets around M dwarfs. “Kepler changed everything,” Muirhead said. Because M-dwarf systems are easier to find, the bounty of such planets is at least partly due to a selection effect. But, as Muirhead points out, Kepler is also designed to find Earth-sized planets around sun-like stars, and the numbers so far suggest that M-dwarfs may offer the best odds for finding life.

“By sheer luck you would be more likely to find a potentially habitable planet around an M dwarf than a star like the sun,” said astronomer Courtney Dressing of Harvard. She led an analysis to estimate how many Earth-sized planets—which she defined as those with radii ranging from one to one-and-a-half times Earth’s radius—orbit M dwarfs in the habitable zone, the region around the star where liquid water can exist on the planet’s surface. According to her latest calculations, one in four M dwarfs hosts such a planet.

That’s higher than the estimated number of Earth-sized planets around a sun-like star, she says. For example, an analysis by astronomer Erik Petigura of UC Berkeley suggests that fewer than 10 percent of sun-like stars have a planet with a radius between one and two times that of Earth’s.

This illustration shows Kepler-186f, the first rocky planet found in a star's habitable zone. Its star is an M dwarf.
This illustration shows Kepler-186f, the first rocky planet found in a star’s habitable zone. Its star is an M dwarf. NASA Ames/SETI Institute/JPL-Caltech

M dwarfs have another thing going for them. They’re the most common star in the galaxy, comprising an estimated 75 percent of the Milky Way’s hundreds of billions of stars. If Dressing’s estimates are right, then our galaxy could be teeming with 100 billion Earth-sized planets in their stars’ habitable zones.

To be sure, these estimates have lots of limitations. They depend on what you mean by the habitable zone, which isn’t well defined. Generally, the habitable zone is where it’s not too hot or too cold for liquid water to exist. But there are countless considerations, such as how well a planet’s atmosphere can retain water. With a more generous definition that widens the habitable zone, Petigura’s numbers for Earth-sized planets around a sun-like star go up to 22 percent or more. Likewise, Dressing’s numbers could also go up.
Astronomers were initially skeptical of M-dwarf systems because they thought a planet couldn’t be habitable near this kind of star. For one, M dwarfs are more active, especially during within the first billion years of its life. They may bombard a planet with life-killing ultraviolet radiation. They can spew powerful stellar flares that would strip a planet of its atmosphere.

And because a planet will tend to orbit close to an M dwarf, the star’s gravity can alter the planet’s rotation around its axis. When such a planet is tidally locked, as such a scenario is called, part of the planet may see eternal daylight while another part sees eternal night. The bright side would be fried while the dark side would freeze—hardly a hospitable situation for life.

But none of these are settled issues, and some studies suggest they may not be as big of a problem as previously thought, says astronomer Aomawa Shields of UCLA. For example, habitability may depend on specific types and frequency of flares, which aren’t well understood yet. Computer models have also shown that an atmosphere can help distribute heat, preventing the dark side of a planet from freezing over.

View Article Here   Read More

Former Lockheed Martin engineer said he spoke with aliens — and has pictures to prove it ~ Video

Former Lockheed Martin engineer Boyd Bushman

Boyd Bushman, who passed away in August, said it takes 45 years for aliens from the planet Quintumnia to reach Earth — and they are divided into 'wranglers' and 'rustlers.'
A former Lockheed Martin engineer showed off his pictures of aliens this summer that he claims to have obtained through conversations with extraterrestrial life.

Boyd Bushman, who died in August at the age of 78, claimed some of the aliens were 230 years old and that there are “American citizens who are working on UFOs 24 hours a day.”

He spoke with independent aerospace engineer Mark Q. Patterson shortly before his death, and Patterson posted the interview to YouTube in October.

Bushman reportedly served as a senior research engineer for Lockheed Martin Skunk Works, Texas Instruments and Hughes Aircraft and talked about his experience at Area 51, the U.S. Air Force base in southern Nevada that’s been the subject of alien folklore.
Bushman describes the aliens as being 4 1/2-to-5-feet tall and have long fingers, webbed feet and come from a planet known as Quintumnia. It takes only 45 years for them to travel to Earth, he said.

The former engineer even gave them an assignment: photograph the planets as they make the voyage to Earth — and he claimed to have those photos. He said they travel using UFOs that are 38 feet in diameter while 18 of the aliens now work with facilities in the United States.

“There are two groups of aliens,” he said, adding that they exist in a kind of “cattle ranch” on the planet. “They divide them into two groups. One group are wranglers, and the others are rustlers – the ones who are stealers of cattle. The two groups act differently. The ones that are wranglers are much more friendly, and have a better relationship with us."

Click to zoom

View Article Here   Read More

NASA Injects New Funds Into Search for Origins of Life

Excerpt from

In a new round of funding announced on Monday, NASA is allocating $50 million to 7 astrobiology research groups in the US to tackle these questions.

The grants will cover 5 years of study and will average $8 million per research group...

The astrobiology teams are based at 3 NASA institutions (Jet Propulsion Laboratory in Pasadena, Calif., Goddard Space Flight Center, Greenbelt, Md. and Ames Research Center, Moffett Field, Calif.), 3 universities (University of Colorado at Boulder, University of California, Riverside and the University of Montana in Missoula) and at The Search for Extraterrestrial Intelligence (SETI) at Mountain View, Calif...

“The intellectual scope of astrobiology is vast, from understanding how our planet went from lifeless to living, to understanding how life has adapted to Earth’s harshest environments, to exploring other worlds with the most advanced technologies to search for signs of life,” said Mary Voytek, director, astrobiology program, NASA Headquarters. “The new teams cover that breadth of astrobiology, and by coming together in the NAI (NASA Astrobiology Institute), they will make the connections between disciplines and organizations that stimulate fundamental scientific advances.”

These 7 new teams join 5 existing NAI teams at the University of Washington in Seattle; Massachusetts Institute of Technology, Cambridge; the University of Wisconsin, Madison; the University of Illinois, Urbana-Champaign; and University of Southern California, Los Angeles.

View Article Here   Read More

NASA Brings Scientists & Theologians Together To Prepare World For Extraterrestrial Contact

Arjun Walia, Collective-EvolutionA couple of months ago top U.S. astronomers gathered in front of congress to let them know that extraterrestrial life exists without question. Their main argument was the size of the universe, emphasizing that there are trillions of stars out there, with one in every five most likely harboring an Earth-like planet. It’s also important to keep in mind that planets do not have to be “Earth-like” in order to harbor life. You can read mor [...]

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
unless otherwise marked.

Terms of Use | Privacy Policy

Up ↑