Tag: galaxies (page 1 of 7)

Lisa Transcendance Brown ~ You Don’t Have A Human Body You Have A Multi Dimensional Body That Was

View Article Here   Read More

Preparing For First Contact Chapter 12 Your Expanded Sense of Self by Arcturians 6-27-16

View Article Here   Read More

Universal Unity – New Earth Consciousness ~ Expansive Light Fields ~ Show #48 KCOR 10-1-2016

View Article Here   Read More

The Science of the Dogon

Excerpt from The Science of The Dogon, by Laird ScrantonThe information presented in the preceding chapters demonstrates a direct relationship between the symbols and themes of the Dogon creation story and known scientific facts relating to the formation of the universe, matter, and biological reproduction. This relationship is a broad and specific one that is couched in clear definitions and supported by priestly interpretations and cosmological drawings. The parallels between Dogon myth [...]

View Article Here   Read More

Take a Spaceship Journey to Arp. 273 ~ Hubble Zoom

Arp 273 is a group of galaxies which interact with each other.  The constellation is 300 million light years away from Earth in the constellation Andromeda. The Andromeda galaxy is also located in the Andromeda constellation. The larger of th...

View Article Here   Read More

Rare Quartet of Quasars Found in the Early Universe


This image shows a rare view of four quasars, indicated by white arrows, found together by astronomers using the Keck Observatory in Hawaii. The bright galactic nuclei are embedded in a giant nebula of cool, dense gas visible in the image as a blue haze. Hennawi & Arrigoni-Battaia, MPIA


Excerpt from smithsonian.com

The odds of success would make a Vegas bookie sit up and take notice. But in a one-in-10 million chance, astronomers surveying the sky have found a group of four tightly packed quasars in one of the most distant parts of the universe. The rare grouping may be a nascent galaxy cluster, and its unusually cold cradle of gas could prompt a re-think of how we model the early universe.

Quasars are among the brightest objects known—according to NASA, each one gives off more energy than 100 mature galaxies combined. But quasars are found only in the far reaches of the universe and can't be seen with the naked eye. Because of the time it takes light to travel that far, detecting such distant objects is akin to seeing back in time, so astronomers think quasars are the seeds of young galaxies, powered by gases falling into the supermassive black holes at their cores. As matter falls inward and gets close to the speed of light, it emits radiation that we can pick up with telescopes.

The quasar phase doesn't last long, only about a thousandth of a galaxy's lifetime. After that, the brightness dies down as the inflow of matter slows, says study leader Joseph Hennawi, an astrophysicist at the Max Planck Institute in Germany. Seeing any two quasars close together while they are still bright is a chancy business, so his team wasn't sure what they'd find when they set out to survey quasars using the W.M. Keck Observatory in Hawaii. To their surprise, they quickly pinpointed four of them in close proximity, cosmically speaking. The quartet is huddled up in an area of sky less than 600,000 light-years across that sits about 10 billion light-years from Earth.

"The authors found it by investigating the environment of just 29 bright quasars," says Michele Trenti, a senior lecturer at the University of Melbourne's School of Physics. "So at face value it seems like winning the lottery with a handful of tickets."
That's not all that was strange about this quasar quartet. The foursome was found inside a cloud of cold, dark gas, and the team's observations suggest that similar clouds surround about 10 percent of the tens of thousands of known quasars. That's odd, because according to current theories, quasars in groups like this should be surrounded by hot plasma, or ionized gas, at a temperature of about 10 million degrees.

“What this means is that there is some physical process that the models aren’t capturing,” says Hennawi, whose team reports the discovery this week in Science.



View Article Here   Read More

Super Alien Civilizations: What Do They Really Want?

Excerpt from huffingtonpost.comHighly advanced aliens seem MIA, according to a recent study by astronomers at Penn State University. These researchers checked out a huge gob of cosmic real estate -- roughly 100,000 galaxies -- and failed to find cl...

View Article Here   Read More

Hubble Finds Giant Halo Around the Andromeda Galaxy





 Excerpt from hubblesite.org

Scientists using NASA's Hubble Space Telescope have discovered that the immense halo of gas enveloping the Andromeda galaxy, our nearest massive galactic neighbor, is about six times larger and 1,000 times more massive than previously measured. The dark, nearly invisible halo stretches about a million light-years from its host galaxy, halfway to our own Milky Way galaxy. This finding promises to tell astronomers more about the evolution and structure of majestic giant spirals, one of the most common types of galaxies in the universe.

"Halos are the gaseous atmospheres of galaxies. The properties of these gaseous halos control the rate at which stars form in galaxies according to models of galaxy formation," explained the lead investigator, Nicolas Lehner of the University of Notre Dame, Indiana. The gargantuan halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. If it could be viewed with the naked eye, the halo would be 100 times the diameter of the full Moon in the sky. This is equivalent to the patch of sky covered by two basketballs held at arm's length.

The Andromeda galaxy, also known as M31, lies 2.5 million light-years away and looks like a faint spindle, about 6 times the diameter of the full Moon. It is considered a near-twin to the Milky Way galaxy.

Because the gas in Andromeda's halo is dark, the team looked at bright background objects through the gas and observed how the light changed. This is a bit like looking at a glowing light at the bottom of a pool at night. The ideal background "lights" for such a study are quasars, which are very distant bright cores of active galaxies powered by black holes. The team used 18 quasars residing far behind Andromeda to probe how material is distributed well beyond the visible disk of the galaxy. Their findings were published in the May 10, 2015, edition of The Astrophysical Journal.

Earlier research from Hubble's Cosmic Origins Spectrograph (COS)-Halos program studied 44 distant galaxies and found halos like Andromeda's, but never before has such a massive halo been seen in a neighboring galaxy. Because the previously studied galaxies were much farther away, they appeared much smaller on the sky. Only one quasar could be detected behind each faraway galaxy, providing only one light anchor point to map their halo size and structure. With its close proximity to Earth and its correspondingly large footprint on the sky, Andromeda provides a far more extensive sampling of a lot of background quasars.
"As the light from the quasars travels toward Hubble, the halo's gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range," explains co-investigator J. Christopher Howk, also of Notre Dame. "By measuring the dip in brightness in that range, we can tell how much halo gas from M31 there is between us and that quasar."

The scientists used Hubble's unique capability to study the ultraviolet light from the quasars. Ultraviolet light is absorbed by Earth's atmosphere, which makes it difficult to observe with a ground-based telescope. The team drew from about 5 years' worth of observations stored in the Hubble data archive to conduct this research. Many previous Hubble campaigns have used quasars to study gas much farther away than — but in the general direction of — Andromeda, so a treasure trove of data already existed.

But where did the giant halo come from? Large-scale simulations of galaxies suggest that the halo formed at the same time as the rest of Andromeda. The team also determined that it is enriched in elements much heavier than hydrogen and helium, and the only way to get these heavy elements is from exploding stars called supernovae. The supernovae erupt in Andromeda's star-filled disk and violently blow these heavier elements far out into space. Over Andromeda's lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy's 200,000-light-year-diameter stellar disk.

What does this mean for our own galaxy? Because we live inside the Milky Way, scientists cannot determine whether or not such an equally massive and extended halo exists around our galaxy. It's a case of not being able to see the forest for the trees. If the Milky Way does possess a similarly huge halo, the two galaxies' halos may be nearly touching already and quiescently merging long before the two massive galaxies collide. Hubble observations indicate that the Andromeda and Milky Way galaxies will merge to form a giant elliptical galaxy beginning about 4 billion years from now.

View Article Here   Read More

Consciousness Does Not Compute (and Never Will), Says Korean Scientist

Daegene Song's research into strong AI could be key to answering fundamental brain science questions Excerpt from prnewswire.com Within some circles in the scientific community, debate rages about whether computers will achieve technological singulari...

View Article Here   Read More

Astronomers Giddy Over What They Call A Cosmic ‘Dinosaur Egg’ About To Hatch



cosmic dinosaur egg
The Antennae galaxies, shown in visible light in a Hubble image (upper image), were studied with ALMA, revealing extensive clouds of molecular gas (center right image). One cloud (bottom image) is incredibly dense and massive, yet apparently star free, suggesting it is the first example of a prenatal globular cluster ever identified.


Excerpt from huffingtonpost.com

A dense cloud of gas 50 million light-years away has astronomers buzzing, and they're using all sorts of strange metaphors to get the rest of us to pay attention.

They've discovered what they think may be a globular cluster -- a big ball of up to one million stars -- on the verge of being born.

“This remarkable object looks like it was plucked straight out of the very early universe," Dr. Kelsey Johnson, an astronomer at the University of Virginia in Charlottesville and lead author on a paper about the research, said in a written statement. "To discover something that has all the characteristics of a globular cluster, yet has not begun making stars, is like finding a dinosaur egg that’s about to hatch.”

cosmic egg
ALMA image of dense cores of molecular gas in the Antennae galaxies. The round yellow object near the center may be the first prenatal example of a globular cluster ever identified. It is surrounded by a giant molecular cloud.


Johnson and her colleagues spotted the bizarre object, which they call the "Firecracker," using the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in Chile. It's located inside a pair of interacting galaxies known to scientists as NGC 4038/NGC 4039, or The Antennae Galaxies.

The Firecracker has a mass that's 50 times that of our sun, and is under an enormous amount of pressure -- roughly 10,000 times greater than the average pressure in interstellar space. According to the researchers, this makes it a good candidate for collapsing into a globular cluster within the next million years.

What do other scientists make of the discovery? Dr. Alison Peck, ALMA scientist at the National Radio Astronomy Observatory, who was not involved in the new research, called it "important" and said she was "really excited to hear about these results."
She told The Huffington Post in an email:
"One of the things that we all yearn to understand is how our surroundings formed, how our galaxy and our solar system came to be. To do this, since we can’t actually watch things change over time, (it just takes too long), we need to find similar objects at different stages of development and compare them. What Dr. Johnson’s team have found here is an analog of an object that we look for in the very early universe, but they’ve found it so close by that we’ll be able to make extremely detailed observations and find out much more about the physical conditions in this exciting region."
The research is set to be published in the Astrophysical Journal. 

View Article Here   Read More

Take a spaceship journey to a galaxy cluster five billion light-years away


Annotated image of the field around CLASS B1608+656

Most of the galaxies visible in this Hubble image are members of a huge cluster called CLASS B1608+656, which lies about five billion light-years away. But the field also contains other objects that are both significantly closer and far more distant — including two gravitational lenses dubbed Fred and Ginger.

These contain enough mass to visibly distort the light from objects behind them. Fred, also known more prosaically as [FMK2006] ACS J160919+6532, lies near the lens galaxies in CLASS B1608+656, while Ginger ([FMK2006] ACS J160910+6532) is markedly closer to us. Despite their different distances from us, both can be seen near to CLASS B1608+656 in the central region of this Hubble image, and are labelled.
Credit:ASA, ESA


Click to zoom

View Article Here   Read More

Astronomers find baby blue galaxy close to dawn of time

NASA, ESA, P. OESCH AND I. MOMCHEVA (YALE UNIVERSITY), AND THE 3D-HST AND HUDF09/XDF TEAMS
Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen. Photo: Pascal Oesch and Ivelina Momcheva, NASA, European Space Agency via AP


Excerpt from smh.com.au

A team of astronomers peering deep into the heavens have discovered the earliest, most distant galaxy yet, just 670 million years after the Big Bang.

Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen.
Close-up of the blue galaxy

The findings, described in Astrophysical Journal Letters, reveal a surprisingly active, bright galaxy near the very dawn of the cosmos that could shed light on what the universe, now 13.8 billion years old, was really like in its young, formative years.

"We're actually looking back through 95 per cent of all time to see this galaxy," said study co-author Garth Illingworth, an astronomer at the University of California, Santa Cruz.

"It's really a galaxy in its infancy ... when the universe was in its infancy."

Capturing an image from a far-off light source is like looking back in time. When we look at the sun, we're seeing a snapshot of what it looked like eight minutes ago.

The same principle applies for the light coming from the galaxy known as EGS-zs8-1. We are seeing this distant galaxy as it existed roughly 13.1 billion years ago.

EGS-zs8-1 is so far away that the light coming from it is exceedingly faint. And yet, compared with other distant galaxies, it is surprisingly active and bright, forming stars at roughly 80 times the rate the Milky Way does today.

This precocious little galaxy has built up the mass equivalent to about 8 billion suns, more than 15 per cent of the mass of the Milky Way, even though it appears to have been in existence for a mere fraction of the Milky Way's more than 13 billion years.

"If it was a galaxy near the Milky Way [today], it would be this vivid blue colour, just because it's forming so many stars," Illingworth said.

One of the many challenges with looking for such faint galaxies is that it's hard to tell if they're bright and far, or dim and near. Astronomers can usually figure out which it is by measuring how much that distant starlight gets stretched, "redshifted", from higher-energy light such as ultraviolet down to optical and then infrared wavelengths. The universe is expanding faster and faster, so the further away a galaxy is, the faster it's going, and the more stretched, or "redder", those wavelengths of light will be.

The astronomers studied the faint light from this galaxy using NASA's Hubble and Spitzer space telescopes. But EGS-zs8-1 seemed to be too bright to be coming from the vast distances that the Hubble data suggested.

To narrow in, they used the MOSFIRE infrared spectrograph at the Keck I telescope in Hawaii to search for a particularly reliable fingerprint of hydrogen in the starlight known as the Lyman-alpha line. This fingerprint lies in the ultraviolet part of the light spectrum, but has been shifted to redder, longer wavelengths over the vast distance between the galaxy and Earth.

It's a dependable line on which to base redshift (and distance) estimates, Illingworth said - and with that settled, the team could put constraints on the star mass, star formation rate and formation epoch of this galaxy.

The telltale Lyman-alpha line also reveals the process through which the universe's haze of neutral hydrogen cleared up, a period called the epoch of reionisation. As stars formed and galaxies grew, their ultraviolet radiation eventually ionised the hydrogen and ended the "dark ages" of the cosmos.

Early galaxies-such as EGS-zs8-1 - are "probably the source of ultraviolet radiation that ionised the whole universe", Illingworth said.

Scientists have looked for the Lyman-alpha line in other distant galaxies and come up empty, which might mean that their light was still being blocked by a haze of neutral hydrogen that had not been ionised yet.

But it's hard to say with just isolated examples, Illingworth pointed out. If scientists can survey many galaxies from different points in the universe's very early history, they can have a better sense of how reionisation may have progressed.

"We're trying to understand how many galaxies do have this line - and that gives us some measure of when the universe itself was reionised," Illingworth said.

"One [galaxy] is interesting, but it's when you have 50 that you can really say something about what galaxies were really like then."
As astronomers push the limits of current telescopes and await the completion of NASA's James Webb Space Telescope, set for launch in 2018, scientists may soon find more of these galaxies even closer to the birth of the universe than this new record breaker.

"You don't get to be record holder very long in this business," Illingworth said, "which is good because ultimately we are trying to learn about the universe. So more is better."

View Article Here   Read More

Desperately Seeking ET: Fermi’s Paradox Turns 65 ~ Part 2

Excerpt from huffingtonpost.comIntroductionWhy is it so hard to find ET? After 50 years of searching, the SETI project has so far found nothing. In the latest development, on April 14, 2015 Penn State researchers announced that after searching through...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑