Tag: historian

Celebrating Genocide – The Real Story of Thanksgiving

Irwin Ozborne, ContributorThanksgiving: Celebrating all that we have, and the genocide it took to get it.Thanksgiving is one of the most paradoxical times of the year. We gather together with friends and family in celebration of all that we are thankful for and express our gratitude, at the same time we are encouraged to eat in excess. But the irony really starts the next day on Black Friday. On Thursday we appreciate all the simple things in life, such as having a meal, a roof over [...]

View Article Here   Read More

Forbidden Archeology – Michael Cremo

The history we were taught in school is a complete lie in order to coverup our true earth origins as a way to keep us in subservience, control and conformity.Over the past two centuries, archaeologists have found bones, footprints, and artifacts showing that people like ourselves have existed on earth for vast periods of time, going back many millions of years. But many scientists have forgotten or ignored these remarkable discoveries. Primarily because they contradict the now dominant vi [...]

View Article Here   Read More

Ancient Signs in the Sky: Did a Meteorite Change the Course of Christianity 2,000 Years Ago?


Detail, The Conversion of St. Paul. Paul and companions are knocked to the ground during the profound event.

Excerpt from ancient-origins.net

Did an ancient meteor have such a life-changing impact on witnesses of the day that it shaped a religion and altered the course of history? Astronomers theorize that the dramatic flash and boom that converted Paul the Apostle may have been an exploding meteor.

In the Christian Bible, it is written that a man named Saul experienced an event so extreme that it changed his views in an instant, and he became one of the most influential evangelists in early Christianity.

Saul was said to have been a vehement persecutor of the followers of Jesus and was traveling in search of disciples of Jesus for punishment. It is written in the fifth book of the New Testament, Acts of the Apostles, that Saul was on the road to Damascus, Syria, when a bright light appeared in the sky. So intense was the light that he was blinded for three days. What he heard was described as a great thunderous sound, or a divine voice. He and his companions are said to have been knocked to the ground by the force of the event. The experience was so profound that Saul changed his name to Paul, took up missionary journeys across the Mediterranean, and became instrumental in spreading Christianity.

The Conversion of Saint Paul – Paul and his companions are knocked to the ground by a resounding boom and brilliant light. Did a meteor cause this ancient event?
The Conversion of Saint Paul – Paul and his companions are knocked to the ground by a resounding boom and brilliant light. Did a meteor cause this ancient event? 


William Hartmann, co-founder of the Planetary Science Institute in the U.S. has connected Paul’s experience with similar accounts of exploding meteors, such as the well-recorded Chelyabinsk meteor which broke up over Russia in 2013, injuring over 1,500 people. The eyewitness descriptions and physical reactions to meteors or fireballs in the sky seem to parallel what is recorded about Paul.

Meteor trail over Chelyabinsk, Russia.
Meteor trail over Chelyabinsk, Russia. Wikimedia Commons


If true, then it’s possible that an act of nature may have been contributory in the spread and evolution of Christianity in its early days, and therefore shaped the course of history.

In a study published in the journal Meteoritics and Planetary Science, Hartmann cites major events like the meteors or asteroids over Chelyabinsk, Russia and Tunguska, Siberia as offering “opportunities to compare reactions of modern eyewitnesses to eyewitness accounts of possible ancient fireball events.” There are consistencies among the many accounts suggesting the biblical descriptions of Paul’s experience closely match known modern events, reports NewScientist.

In the biblical accounts, Paul was blinded for three days due to the intense light from the sky; it was “brighter than the sun, shining round me,” according to the text. This matches the Chelyabinsk meteor, as it was calculated to be shining around three times as bright as the sun. The blazing fireball made shadows move around the ground as it travelled.

Paul and his companions were said to have been knocked to the earth, and this also corresponds to the shockwave generated by the powerful Chelyabinsk meteor as it blasted out windows, knocked people off their feet, shook cars and buildings, and collapsed roofs.
The divine voice is said to have either boomed like thunder, or questioned Paul’s behavior (the exact sound is debated). Meteors create great, explosive booms and roars which can be scary or painful even for those who know what they’re experiencing.

To the ancients the incredible and unfamiliar natural celestial events were interpreted through cultural understandings of the day – which is to say, they were considered divine or damning.

The Chelyabinsk meteor gave off small amounts of radiation, enough to cause sunburn and temporary blindness in witnesses. Harmann suggests that Paul could have suffered photokeratitis, a temporary blindness from intense ultraviolet radiation, and this explains the return of his sight after healing.

Paul having his sight restored after being blinded by a celestial light that might have been a meteor.
Paul having his sight restored after being blinded by a celestial light that might have been a meteor. 


Hartmann told NewScientist, “Everything they are describing in those three accounts in the book of Acts are exactly the sequence you see with a fireball.”

IBTimes writes that the Acts of Apostles text describes three events of bright lights “from heaven” which took place around Damascus during the 30s B.C. If meteorites can be found in Syria, and accurately dated to the relevant timeframes, it might give support to the published theories.

Hartmann’s research aim is not to discredit Christianity, but to demonstrate how the interpretation of ancient events may have shaped how we exist today, spiritually and culturally.

This wouldn’t be the first meteorite in history to have potentially inspired worship or acted as an agent of change. In antiquity meteorites were seen as messages from the gods, or profound omens, and many cultures saw fallen meteorites as religious icons to be worshiped or as objects of protection. Jewelry and art has also been created from the space rocks.

Each year devout Muslims make the pilgrimage to Mecca in Saudi Arabia, circling the Kaaba, or black stone, and give a nod or a kiss to the meteorite that is said to rest inside the Grand Mosque. The worship of the Black Stone goes back to pre-Islamic shrines, when Semitic cultures used unusual stones to signify sites of reverence. According to Muslim belief, the stone originates from the time of Adam and the Islamic prophet Muhammad set the Black Stone in place after it fell from the skies.

A 1315 illustration inspired by the story of Muhammad and the Meccan clan elders lifting the Black Stone into place. Was the black stone a meteor from space?
A 1315 illustration inspired by the story of Muhammad and the Meccan clan elders lifting the Black Stone into place. Was the black stone a meteor from space?


In a more modern example, after the dramatic Chelyabinsk event over Russia in 2013, the ‘Church of the Meteorite’ was set up, and the followers hold rites on the shores of Lake Chebarkul where pieces of the space rock fell.

Some scientists regard the Conversion of Paul theory as speculation, but seem to welcome further evidence.
Bill Cooke, head of NASA's Meteoroid Environment Office told NewScientist, “It’s well recorded that extraterrestrial impacts have helped to shape the evolution of life on this planet. If it was a Chelyabinsk fireball that was responsible for Paul’s conversion, then obviously that had a great impact on the growth of Christianity.”

Indeed, “Some scholars call Paul the second founder of Christianity” says Justin Meggitt, religious historian at the University of Cambridge. Without the fireball, and without Paul’s conversion, perhaps Christianity would be different than it is today.
“Christianity probably would be very different without him,” Meggitt concludes.

Illumination from 1450 depicting Paul's conversion – the bright light and sound come from the sky. The event was said to change Paul, and may have changed history.
Illumination from 1450 depicting Paul's conversion – the bright light and sound come from the sky. The event was said to change Paul, and may have changed history. Public Domain
Featured Image: Detail, The Conversion of St. Paul. Paul and companions are knocked to the ground during the profound event.

View Article Here   Read More

Does the Past Exist Yet? Evidence Suggests Your Past Isn’t Set in Stone


thumbnail



Excerpt from robertlanza.com
By Robert Lanza 

Recent discoveries require us to rethink our understanding of history. “The histories of the universe,” said renowned physicist Stephen Hawking “depend on what is being measured, contrary to the usual idea that the universe has an objective observer-independent history.”

Is it possible we live and die in a world of illusions? Physics tells us that objects exist in a suspended state until observed, when they collapse in to just one outcome. Paradoxically, whether events happened in the past may not be determined until sometime in your future – and may even depend on actions that you haven’t taken yet.

In 2002, scientists carried out an amazing experiment, which showed that particles of light “photons” knew — in advance — what their distant twins would do in the future. They tested the communication between pairs of photons — whether to be either a wave or a particle. Researchers stretched the distance one of the photons had to take to reach its detector, so that the other photon would hit its own detector first. The photons taking this path already finished their journeys — they either collapse into a particle or don’t before their twin encounters a scrambling device.
Somehow, the particles acted on this information before it happened, and across distances instantaneously as if there was no space or time between them. They decided not to become particles before their twin ever encountered the scrambler. It doesn’t matter how we set up the experiment. Our mind and its knowledge is the only thing that determines how they behave. Experiments consistently confirm these observer-dependent effects.

More recently (Science 315, 966, 2007), scientists in France shot photons into an apparatus, and showed that what they did could retroactively change something that had already happened. As the photons passed a fork in the apparatus, they had to decide whether to behave like particles or waves when they hit a beam splitter. 
Later on – well after the photons passed the fork – the experimenter could randomly switch a second beam splitter on and off. It turns out that what the observer decided at that point, determined what the particle actually did at the fork in the past. At that moment, the experimenter chose his history.

Of course, we live in the same world. Particles have a range of possible states, and it’s not until observed that they take on properties. So until the present is determined, how can there be a past? According to visionary physicist John Wheeler (who coined the word “black hole”), “The quantum principle shows that there is a sense in which what an observer will do in the future defines what happens in the past.” Part of the past is locked in when you observe things and the “probability waves collapse.” But there’s still uncertainty, for instance, as to what’s underneath your feet. If you dig a hole, there’s a probability you’ll find a boulder. Say you hit a boulder, the glacial movements of the past that account for the rock being in exactly that spot will change as described in the Science experiment.

But what about dinosaur fossils? Fossils are really no different than anything else in nature. For instance, the carbon atoms in your body are “fossils” created in the heart of exploding supernova stars. 
Bottom line: reality begins and ends with the observer. “We are participators,” Wheeler said “in bringing about something of the universe in the distant past.” Before his death, he stated that when observing light from a quasar, we set up a quantum observation on an enormously large scale. It means, he said, the measurements made on the light now, determines the path it took billions of years ago.

Like the light from Wheeler’s quasar, historical events such as who killed JFK, might also depend on events that haven’t occurred yet. There’s enough uncertainty that it could be one person in one set of circumstances, or another person in another. Although JFK was assassinated, you only possess fragments of information about the event. But as you investigate, you collapse more and more reality. According to biocentrism, space and time are relative to the individual observer – we each carry them around like turtles with shells.

History is a biological phenomenon — it’s the logic of what you, the animal observer experiences. You have multiple possible futures, each with a different history like in the Science experiment. Consider the JFK example: say two gunmen shot at JFK, and there was an equal chance one or the other killed him. This would be a situation much like the famous Schrödinger’s cat experiment, in which the cat is both alive and dead — both possibilities exist until you open the box and investigate.

“We must re-think all that we have ever learned about the past, human evolution and the nature of reality, if we are ever to find our true place in the cosmos,” says Constance Hilliard, a historian of science at UNT. Choices you haven’t made yet might determine which of your childhood friends are still alive, or whether your dog got hit by a car yesterday. In fact, you might even collapse realities that determine whether Noah’s Ark sank. “The universe,” said John Haldane, “is not only queerer than we suppose, but queerer than we can suppose.”

View Article Here   Read More

How Would the World Change If We Found Alien Life?







Excerpt from space.com
By by Elizabeth Howell

In 1938, Orson Welles narrated a radio broadcast of "War of the Worlds" as a series of simulated radio bulletins of what was happening in real time as Martians arrived on our home planet. The broadcast is widely remembered for creating public panic, although to what extent is hotly debated today.

Still, the incident serves as an illustration of what could happen when the first life beyond Earth is discovered. While scientists might be excited by the prospect, introducing the public, politicians and interest groups to the idea could take some time.

How extraterrestrial life would change our world view is a research interest of Steven Dick, who just completed a term as the Baruch S. Blumberg NASA/Library of Congress Chair of Astrobiology. The chair is jointly sponsored by the NASA Astrobiology Program and the John W. Kluge Center, at the Library of Congress. 


Dick is a former astronomer and historian at the United States Naval Observatory, a past chief historian for NASA, and has published several books concerning the discovery of life beyond Earth. To Dick, even the discovery of microbes would be a profound shift for science.

"If we found microbes, it would have an effect on science, especially biology, by universalizing biology," he said. "We only have one case of biology on Earth. It's all related. It's all DNA-based. If we found an independent example on Mars or Europa, we have a chance of forming a universal biology."

Dick points out that even the possibilities of extraterrestrial fossils could change our viewpoints, such as the ongoing discussion of ALH84001, a Martian meteorite found in Antarctica that erupted into public consciousness in 1996 after a Science article said structures inside of it could be linked to biological activity. The conclusion, which is still debated today, led to congressional hearings.

"I've done a book about discovery in astronomy, and it's an extended process," Dick pointed out. "It's not like you point your telescope and say, 'Oh, I made a discovery.' It's always an extended process: You have to detect something, you have to interpret it, and it takes a long time to understand it. As for extraterrestrial life, the Mars rock showed it could take an extended period of years to understand it."


ALH84001 Meteorite
The ALH84001 meteorite, which in a 1996 Science publication was speculated to be host to what could be ancient Martian fossils. That finding is still under dispute today.

Mayan decipherments

In his year at the Library of Congress, Dick spent time searching for historical examples (as well as historical analogies) of how humanity might deal with first contact with an extraterrestrial civilization. History shows that contact with new cultures can go in vastly different directions.

Hernan Cortes' treatment of the Aztecs is often cited as an example of how wrong first contact can go. But there were other efforts that were a little more mutually beneficial, although the outcomes were never perfect. Fur traders in Canada in the 1800s worked closely with Native Americans, for example, and the Chinese treasure fleet of the 15th Century successfully brought its home culture far beyond its borders, perhaps even to East Africa.

Even when both sides were trying hard to make communication work, there were barriers, noted Dick.

"The Jesuits had contact with Native Americans," he pointed out. "Certain concepts were difficult, like when they tried to get across the ideas of the soul and immortality."



A second look by the Mars Global Surveyor at the so-called Viking “Face on Mars” in Cydonia revealed a more ordinary-looking hill, showing that science is an extended process of discovery.


Indirect contact by way of radio communications through the Search for Extraterrestrial Intelligence (SETI), also illustrates the challenges of transmitting information across cultures. There is historical precedence for this, such as when Greek knowledge passed west through Arab translators in the 12th Century. This shows that it is possible for ideas to be revived, even from dead cultures, he said.

It's also quite possible that the language we receive across these indirect communications would be foreign to us. Even though mathematics is often cited as a universal language, Dick said there are actually two schools of thought. One theory is that there is, indeed, one kind of mathematics that is based on a Platonic idea, and the other theory is that mathematics is a construction of the culture that you are in. 

"There will be a decipherment process. It might be more like the Mayan decipherments," Dick said.


The ethics of contact

As Dick came to a greater understanding about the potential c impact of extraterrestrial intelligence, he invited other scholars to present their findings along with him. Dick chaired a two-day NASA/Library of Congress Astrobiology Symposium called "Preparing for Discovery," which was intended to address the impact of finding any kind of life beyond Earth, whether microbial or some kind of intelligent, multicellular life form.

The symposium participants discussed how to move beyond human-centered views of defining life, how to understand the philosophical and theological problems a discovery would bring, and how to help the public understand the implications of a discovery.

"There is also the question of what I call astro-ethics," Dick said. "How do you treat alien life? How do you treat it differently, ranging from microbes to intelligence? So we had a philosopher at our symposium talking about the moral status of non-human organisms, talking in relation to animals on Earth and what their status is in relation to us."

Dick plans to collect the lectures in a book for publication next year, but he also spent his time at the library gathering materials for a second book about how discovering life beyond Earth will revolutionize our thinking.

"It's very farsighted for NASA to fund a position like this," Dick added. "They have all their programs in astrobiology, they fund the scientists, but here they fund somebody to think about what the implications might be. It's a good idea to do this, to foresee what might happen before it occurs."

View Article Here   Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here   Read More

NASA Brings Scientists & Theologians Together To Prepare World For Extraterrestrial Contact

Arjun Walia, Collective-EvolutionA couple of months ago top U.S. astronomers gathered in front of congress to let them know that extraterrestrial life exists without question. Their main argument was the size of the universe, emphasizing that there are trillions of stars out there, with one in every five most likely harboring an Earth-like planet. It’s also important to keep in mind that planets do not have to be “Earth-like” in order to harbor life. You can read mor [...]

View Article Here   Read More

Message from Porf June 29 2006

View Article Here   Read More

Return of the 12th Planet

{mainvote}

25 February 2011 

Channeler:  Lauren C. Gorgo

Thursday, February 24, 2011

THE RETURN OF THE 12th PLANET

I received an interesting message the other day, from a group of archangels who I have not yet had the p...

View Article Here   Read More

Libra 2010: Cultivating Kinship – Within & Without

a message from Kelly M. Beard

Wednesday, 29 September, 2010 

The artist has a special task and duty - the task of reminding men of their humanity and the promise of their creativity!

~ Louis Mumford...

View Article Here   Read More

THE WORLD WILL NOT END IN 2012

By Carlos Barrios

Carlos Barrios was born into a Spanish family on El Altiplano, the highlands of Chile. His home was in Huehue tenango, also the dwelling place of the Maya Mam tribe. With other Maya and other indigenous tradition keepers, the Mam ...

View Article Here   Read More

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑