Tag: impression (page 1 of 3)

Preparing For First Contact by The Pleiadians through Sue Lee CHAPTER 20 Where is Sharman? 8-1-2016

View Article Here   Read More

Archangel Michael – We Are 100% Sure – November-03-2016

View Article Here   Read More

You Are The Ones Moving Planet Into Higher Vibrations OWS Ashira Galactic Federation of Light

View Article Here   Read More

Pleiadian High Council of Seven – You Are Necessary – September-15-2016

View Article Here   Read More

A Trip Through Some of the Most Insane Acts of Violence in the Bible

Video – Let’s be honest, the Bible is not exactly a peaceful tale of universal love and kinship. Jesus had his impression on the world, but it was indeed a cruel, cruel world at times. FTF Films takes a trip through some of the many horrific acts of violence of one of the most influential pieces of human literature ever. [...]

View Article Here   Read More

‘Hats Off’ To HATS-6b: Discovery of ‘puffy’ new planet brings scientists closer to finding new life in outer space

An artist's impression of the planet HATS-6b, orbiting the star, HATS-6. (Supplied: ANU) Excerpt from abc.net.au A "puffy" new planet orbiting a small, cool star has been discovered 500 light years away from Earth, by a team of scientists c...

View Article Here   Read More

NASA application grants general public the opportunity to explore the surface of Vesta

NASA's Dawn spacecraft visited Vesta for a year before continuing on to Ceres (Image: NASA/JPL-Caltech) Excerpt from gizmag.comNASA has released a browser-based application that allows citizen scientists to explore the surface of the asteroid V...

View Article Here   Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here   Read More

For the first time, scientists find complex organic molecules in an infant star system



Artist impression of the protoplanetary disk surrounding the young star MWC 480. ALMA has detected the complex organic molecule methyl cyanide in the outer reaches of the disk in the region where comets are believed to form. This is another indication that complex organic chemistry, and potentially the conditions necessary for life, is universal. (B. Saxton/NRAO/AUI/NSF)



Excerpt from washingtonpost.com

We're not special. Or our complex organic molecules aren't, anyway. And that's good news in the hunt for extraterrestrial life.

In a new study published Wednesday in Nature, astronomers found the first signs of the complex, carbon-based molecules that make life possible on Earth in a protoplanetary disk; the region where cosmic building blocks gather to create planets in a brand-new star system. The cyanides found there are essential to life as we know it: without them, there would be no proteins.

"We know when our own solar system was very young, it was rich in water and complex organics. We know that from observing comets," explained study author Karin Öberg, an assistant professor of astronomy at Harvard. Comets have kept the molecules of our solar system's early days locked up tight ever since, which is why scientists are so eager to study them for clues about Earth's formation. These comets show us that certain organic molecules were common in our solar system's pre-planetary days.

But this is the first time we've seen evidence of such molecules ready to seed another star system with planets that could support life.
"We're finding that we're not that special," Öberg said. "Other young solar systems in the making are also rich in the same volatiles, and in similar proportions."

And in this case, she said, being not-special is a great thing: If other solar systems formed just the way ours did, we can hope that they formed some kind of life, too.

Öberg and her colleagues found the molecules using the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope with some pretty sweet resolution. They spotted the complex organics as much as 15 billion kilometers from the star itself, which they believe is right smack dab in the middle of the system's comet-forming region. That means the organics could get locked away in comets, just as the ones in our solar system were, and go out to seed future planets with them (as some believe was the case with Earth).

"It was kind of a chance discovery, because we weren't targeting this specific molecule," Öberg said. So she and her team need to go back and look more systematically. She also hopes they'll be able to find more systems to look at. The star they've observed -- MWC 480, located some 455 light-years away in the Taurus star-forming region -- is twice the mass of the sun, so they also hope to find some that are more similar to our host star.

 "We of course want to know whether this is a really common thing or if we just lucked out on this one," Öberg said.

View Article Here   Read More

Scientists: Enceladus may have warm water ocean with ingredients for life


Enceladus ocean
This artist's impression of the interior of Saturn's moon Enceladus shows that interactions between hot water and rock occur at the floor of the subsurface ocean -- the type of environment that might be friendly to life, scientists say. (NASA/JPL-Caltech)



Excerpt from latimes.com

Scientists say they’ve discovered evidence of a watery ocean with warm spots hiding beneath the surface of Saturn’s icy moon Enceladus. The findings, described in the journal Nature, are the first signs of hydrothermal activity on another world outside of Earth – and raise the chances that Enceladus has the potential to host microbial life.

Scientists have wondered about what lies within Enceladus at least since NASA’s Cassini spacecraft caught the moon spewing salty water vapor out from cracks in its frozen surface. Last year, a study of its gravitational field hinted at a 10-kilometer-thick regional ocean around the south pole lying under an ice crust some 30 to 40 kilometers deep.

Another hint also emerged about a decade ago, when Cassini discovered tiny dust particles escaping Saturn’s system that were nanometer-sized and rich in silicon.

“It’s a peculiar thing to find particles enriched with silicon,” said lead author Hsiang-Wen Hsu, a planetary scientist at the University of Colorado, Boulder. In Saturn’s moons and among its rings, water ice dominates, so these odd particles clearly stood out.

The scientists traced these particles’ origin to Saturn’s E-ring, which lies between the orbits of the moons Mimas and Titan and whose icy particles are known to come from Enceladus. So Hsu and colleagues studied the grains to understand what was going on inside the gas giant’s frigid satellite.   
Rather than coming in a range of sizes, these particles were all uniformly tiny – just a few nanometers across. Studying the spectra of these grains, the scientists found that they were made of silicon dioxide, or silica. That’s not common in space, but it’s easily found on Earth because it’s a product of water interacting with rock. 

Knowing how silica interacts in given conditions such as temperature, salinity and alkalinity, the scientists could work backward to determine what kind of environment creates these unusual particles.

A scientist could do the same thing with a cup of warm coffee, Hsu said.

“You put in the sugar and as the coffee gets cold, if you know the relation of the solubility of sugar as a function of temperature, you will know how hot your coffee was,” Hsu said. “And applying this to Enceladus’s ocean, we can derive a minimum [temperature] required to form these particles.”

The scientists then ran experiments in the lab to determine how such silica particles came to be. With the particles’ particular makeup and size distribution, they could only have formed under very specific circumstances, the study authors found, determining that the silica particles must have formed in water that had less than 4% salinity and that was slightly alkaline (with a pH of about 8.5 to 10.5) and at temperatures of at least 90 degrees Celsius (roughly 190 degrees Fahrenheit).

The heat was likely being generated in part by tidal forces as Saturn’s gravity kneads its icy moon. (The tidal forces are also probably what open the cracks in its surface that vent the water vapor into space.)
Somewhere inside the icy body, there was hydrothermal activity – salty warm water interacting with rocks. It’s the kind of environment that, on Earth, is very friendly to life.  

“It’s kind of obvious, the connection between hydrothermal interactions and finding life,” Hsu said. “These hydrothermal activities will provide the basic activities to sustain life: the water, the energy source and of course the nutrients that water can leach from the rocks.”

Enceladus, Hsu said, is now likely the “second-top object for astrobiology interest” – the first being Jupiter’s icy moon and fellow water-world, Europa.
This activity is in all likelihood going on right now, Hsu said – over time, these tiny grains should glom together into larger and larger particles, and because they haven’t yet, they must have been recently expelled from Enceladus, within the last few months or few years at most.

Gabriel Tobie of the University of Nantes in France, who was not involved in the research, compared the conditions that created these silica particles to a hydrothermal field in the Atlantic Ocean known as Lost City.

“Because it is relatively cold, Lost City has been posited as a potential analogue of hydrothermal systems in active icy moons. The current findings confirm this,” Tobie wrote in a commentary on the paper. “What is more, alkaline hydrothermal vents might have been the birthplace of the first living organisms on the early Earth, and so the discovery of similar environments on Enceladus opens fresh perspectives on the search for life elsewhere in the Solar System.”

However, Hsu pointed out, it’s not enough to have the right conditions for life – they have to have been around for long enough that life would have a fighting chance to emerge.

“The other factor that is also very important is the time.… For Enceladus, we don’t know how long this activity has been or how stable it is,” Hsu said. “And so that’s a big uncertainty here.”

One way to get at this question? Send another mission to Enceladus, Tobie said.

“Cassini will fly through the moon’s plume again later this year,” he wrote, “but only future missions that can undertake improved in situ investigations, and possibly even return samples to Earth, will be able to confirm Enceladus’ astrobiological potential and fully reveal the secrets of its hot springs. ”

View Article Here   Read More

Habitable’ Super-Earth Might Exist After All


Artist's impression of Gliese 581d, a controversial exoplanet that may exist only 20 light-years from Earth.



Excerpt from news.discovery.com

Despite having discovered nearly 2,000 alien worlds beyond our solar system, the profound search for exoplanets — a quest focused on finding a true Earth analog — is still in its infancy. It is therefore not surprising that some exoplanet discoveries aren’t discoveries at all; they are in fact just noise in astronomical data sets.

But when disproving the existence of extrasolar planets that have some characteristics similar to Earth, we need to take more care during the analyses of these data, argue astronomers from Queen Mary, University of London and the University of Hertfordshire.

In a paper published by the journal Science last week, the researchers focus on the first exoplanet discovered to orbit a nearby star within its habitable zone.

Revealed in 2009, Gliese 581d hit the headlines as a “super-Earth” that had the potential to support liquid water on its possibly rocky surface. With a mass of around 7 times that of Earth, Gliese 581d would be twice as big with a surface gravity around twice that of Earth. Though extreme, it’s not such a stretch of the imagination that such a world, if it is proven to possess an atmosphere and liquid ocean, that life could take hold.

And the hunt for life-giving alien worlds is, of course, the central motivation for exoplanetary studies.

But the exoplanet signal has been called into doubt.
Gliese 581d’s star, Gliese 581, is a small red dwarf around 20 light-years away. Red dwarfs are known to be tempestuous little stars, often generating violent flaring outbursts and peppered in dark features called starspots. To detect the exoplanet, astronomers measured the very slight frequency shift (Doppler shift) of light from the star — as the world orbits, it exerts a tiny gravitational “tug”, causing the star to wobble. When this periodic wobble is detected, through an astronomical technique known as the “radial velocity method,” a planet may be revealed.

Last year, however, in a publication headed by astronomers at The Pennsylvania State University, astronomers pointed to the star’s activity as an interfering factor that may have imitated the signal from an orbiting planet when in fact, it was just noisy data.

But this conclusion was premature, argues Guillem Anglada-Escudé, of Queen Mary, saying that “one needs to be more careful with these kind of claims.”

“The existence, or not, of GJ 581d is significant because it was the first Earth-like planet discovered in the ‘Goldilocks’-zone around another star and it is a benchmark case for the Doppler technique,” said Anglada-Escudé in a university press release. “There are always discussions among scientists about the ways we interpret data but I’m confident that GJ 581d has been in orbit around Gliese 581 all along. In any case, the strength of their statement was way too strong. If the way to treat the data had been right, then some planet search projects at several ground-based observatories would need to be significantly revised as they are all aiming to detect even smaller planets.”

The upshot is that this new paper challenges the statistical technique used in 2014 to account for the signal being stellar noise — focusing around the presence of starspots in Gliese 581′s photosphere.

Gliese 581d isn’t the only possible exoplanet that exists around that star — controversy has also been created by another, potentially habitable exoplanet called Gliese 581g. Also originally detected through the wobble of the star, this 3-4 Earth mass world was found to also be in orbit within the habitable zone. But its existence has been the focus of several studies supporting and discounting its presence. Gliese 581 is also home to 3 other confirmed exoplanets, Gliese 581e, b and c.

Currently, observational data suggests Gliese 581g was just noise, but as the continuing debate about Gliese 581d is proving, this is one controversy that will likely keep on rumbling in the scientific journals for some time.

View Article Here   Read More

Ancient ‘Blue’ Mars Lost an Entire Ocean to Space


Artist impression of Mars ocean

Excerpt from news.discovery.com

Mars was once a small, wet and blue world, but over the past 4 billion years, Mars dried up and became the red dust bowl we know today.

But how much water did Mars possess? According to research published in the journal Science, the Martian northern hemisphere was likely covered in an ocean, covering a region of the approximate area as Earth’s Atlantic Ocean, plunging, in some places, to 1.6 kilometers (1 mile) deep.

“Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space,” said Geronimo Villanueva, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new paper, in an ESO news release. “With this work, we can better understand the history of water on Mars.”

Over a 6-year period, Villanueva and his team used the ESO’s Very Large Telescope (in Chile) and instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility (both on Mauna Kea in Hawaii) to study the distribution of water molecules in the Martian atmosphere. By building a comprehensive map of water distribution and seasonal changes, they were able to arrive at this startling conclusion.

It is becoming clear that, over the aeons, Mars lost the majority of its atmosphere to space. That also goes for its water. Though large quantities of water were likely frozen below the surface as the atmosphere thinned and cooled, the water contained in an ocean of this size must have gone elsewhere — it must have also been lost to space.

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 meters deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere. 
The water in Earth’s oceans contains molecules of H2O, the familiar oxygen atom bound with 2 hydrogen atoms, and, in smaller quantities, the not-so-familiar HDO molecule. HDO is a type of water molecule that contains 1 hydrogen atom, 1 oxygen atom and 1 deuterium atom. The deuterium atom is an isotope of hydrogen; whereas hydrogen consists of 1 proton and an electron, deuterium consists of 1 proton, 1 neutron and 1 electron. Therefore, due to the extra neutron the deuterium contains, HDO molecules are slightly heavier than the regular H2O molecules.

Also known as “semi-heavy water,” HDO is less susceptible to being evaporated away and being lost to space, so logic dictates that if water is boiled (or sublimated) away on Mars, the H2O molecules will be preferentially lost to space whereas a higher proportion of HDO will be left behind.

By using powerful ground-based observatories, the researchers were able to determine the distribution of HDO molecules and the H2O molecules and compare their ratios to liquid water that is found in its natural state.

Of particular interest is Mars’ north and south poles where icecaps containing water and carbon dioxide ice persist to modern times. The water those icecaps contain is thought to document the evolution of water since the red planet’s wet Noachian period (approximately 3.7 billion years ago) to today. It turns out that the water measured in these polar regions is enriched with HDO by a factor of 7 when compared with water in Earth’s oceans. This, according to the study, indicates that Mars has lost a volume of water 6.5 times larger than the water currently contained within the modern-day icecaps.

Therefore, the volume of Mars’ early ocean must have been at least 20 million cubic kilometers, writes the news release.

Taking into account the Martian global terrain, most of the water would have been concentrated around the northern plains, a region dominated by low-lying land. An ancient ocean, with this estimate volume of water, would have covered 19 percent of the Martian globe, a significant area considering the Atlantic Ocean covers 17 percent of the Earth’s surface.

“With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer,” said Michael Mumma, also of NASA’s Goddard Space Flight Center.

This estimate is likely on the low-side as Mars is thought to contain significant quantities of water ice below its surface — a fact that surveys such as this can be useful for pinpointing exactly where the remaining water may be hiding.

Ulli Kaeufl, of the European Southern Observatory and co-author of the paper, added: “I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometers away!”
Source: ESO

View Article Here   Read More

Birth of the Nibiru Legend? Astronomers Say Alien Star System Buzzed Our Sun

Scholz's star - shown in this artist's impression - is currently 20 light-years away. But it once came much closerExcerpt from bbc.comAn alien star passed through our Solar System just 70,000 years ago, astronomers have discovered.  No othe...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑