Tag: initial (page 1 of 8)

High-Energy Cosmic Neutrinos Observed At The Geographic South Pole

An team of international experts has announced a new observation of high-energy neutrino particles using an instrument funded by the National Science Foundation (NSF). The particles from beyond our galaxy have been detected at the geographic South Pole, using a massive instrument buried deep in ice.The scientists from the IceCube Collaboration, a research team with headquarters at the Wisconsin IceCube Particle Astrophysics Center at the University of Wisconsin-Madison, pub [...]

View Full Article   Read More

Galactic Federation of Light Sheldan Nidle July 14 2015

View Full Article   Read More

Galactic Federation of Light Sheldan Nidle June 23 2015

View Full Article   Read More

Are Aliens Finding Ways to Communicate With Humans From Deep Space? NASA intercepts strange “Alien Sounds”


The recent alien hunting projects of several teams might be another failure, but some unusual sounds were captured by a balloon experiment set up by NASA, which they think could possibly come from another alien life.

The balloon carries an infrasound microscope that is able to record sound waves in the atmosphere at frequencies lower than 20 hertz. The device is floating just 22 miles above the Earth when it picked up the strange sound.

It was Daniel Bowman, a student from the University of North Carolina, who designed and built the balloon equipment used in the study. The initial program managed by NASA and the Louisiana Space Consortium tested the flight of the equipment where they captured sounds from the atmosphere of Arizona and New Mexico. 
It was just one of the ten experiments flown atop of the High Altitude Student Platform that successfully picked up the sounds. 
The said program was able to launch more than 70 student experiments in search of a successful project since 2006.

As that one balloon fly over the height of 37,500 meters above Earth for 9 hours, which is just below the top of the stratosphere and higher than the flight height of airplanes, it got the record of the highest point an equipment carrying infrasound has ever reached.

But the record is not all that, the sound captured by the balloon is what researchers claimed as a signal that they never encountered before.

As Bowman has said, “It sounds kind of like ‘The X-Files’.” There is some possibility that the sound might have come from another alien life, but may also originate from wind farms, crashing ocean waves, atmospheric turbulence, gravity waves, and vibrations formed by the balloon cable.

Bowman reported, “I was surprised by the sheer complexity of the signal. I expected to see a few little stripes,” as he was pertaining to the visual representation of the sounds through spectrogram detailing. The frequency range below 20 hertz is not audible to human hearing frequency, so the team adjusted it faster during the analysis.

He added, “There haven’t been acoustic recordings in the stratosphere for 50 years. Surely, if we place instruments up there, we will find things we haven’t seen before.”

Infrasound carried at great distances from its source is usually formed by low-frequency wave-creating phenomenon, such as earthquakes, volcanic eruptions, thunderstorms and meteor showers. Scientists have long used infrasound detectors to monitor weather and geologic activity all over the planet. NASA also plans to use infrasound detectors on the much-awaited Mars mission.

View Full Article   Read More

Secretive X-37B Military Space Plane Preps for Another Mystery Mission

X-37B Space Plane in Orbit: Artist’s Concept
Artist's illustration of the U.S. Air Force's X-37B space plane in orbit. The mysterious spacecraft is scheduled to launch on its fourth mission on May 20, 2015.
Credit: NASA Marshall Space Flight Center

Excerpt from space.com

The United States Air Force's X-37B space plane will launch on its fourth mystery mission next month.
The unmanned X-37B space plane, which looks like a miniature version of NASA's now-retired space shuttle orbiter, is scheduled to blast off atop a United Launch Alliance Atlas V rocket from Florida's Cape Canaveral Air Force Station on May 20.

"We are excited about our fourth X-37B mission," Randy Walden, director of the Air Force Rapid Capabilities Office, said in a statement. "With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads." 

The X-37B's payloads and specific activities are classified, so it's unclear exactly what the spacecraft does while zipping around the Earth. But Air Force officials have revealed a few clues about the upcoming mission.

"The Air Force Research Laboratory (AFRL), Space and Missile Systems Center (SMC) and the Air Force Rapid Capabilities Office (AFRCO) are investigating an experimental propulsion system on the X-37B on Mission 4," Capt. Chris Hoyler, an Air Force spokesman, told Space.com via email.  

"AFRCO will also host a number of advance materials onboard the X-37B for the National Aeronautics and Space Administration (NASA) to study the durability of various materials in the space environment," Hoyler added.

The Air Force owns two X-37B space planes, both of which were built by Boeing's Phantom Works division. The solar-powered spacecraft are about 29 feet long by 9.5 feet tall (8.8 by 2.9 meters), with a wingspan of 15 feet (4.6 m) and a payload bay the size of a pickup-truck bed. The X-37B launches vertically atop a rocket and lands horizontally on a runway, like the space shuttle did.

One of the two X-37B vehicles flew the program's first and third missions, which were known as OTV-1 and OTV-3, respectively. ("OTV" is short for "Orbital Test Vehicle.") The other spacecraft flew OTV-2. Air Force officials have not revealed which space plane will be going to orbit on the upcoming mission.

OTV-1 launched in April 2010 and landed in December of that year, staying in orbit for 225 days. OTV-2 blasted off in March 2011 and circled Earth for 469 days, coming down in June 2012. OTV-3 launched in December 2012 and stayed aloft for a record-breaking 675 days, finally landing in October 2014.

Recovery Crew Processes X-37B Space Plane
A recovery team processes the U.S. Air Force's X-37B space plane after the robotic spacecraft's successful landing at Vandenberg Air Force Base in California on Oct. 17, 2014. The touchdown marked the end of the X-37B’s third space mission.
Credit: Boeing

If Air Force officials know how long OTV-4 is going to last, they're not saying.

"The X-37B is designed for an on-orbit duration of 270 days," Hoyler said. "Longer missions have been demonstrated. As with previous missions, the actual duration will depend on test objectives, on-orbit vehicle performance and conditions at the landing facility."

The secrecy surrounding the X-37B and its payloads has fueled speculation in some quarters that the vehicle could be a space weapon of some sort. But Air Force officials have repeatedly refuted that notion.

"The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America's future in space, and operating experiments which can be returned to, and examined, on Earth," Air Force officials wrote in on online X-37B fact sheet. 

"Technologies being tested in the program include advanced guidance, navigation and control; thermal protection systems; avionics; high-temperature structures and seals; conformal reusable insulation, lightweight electromechanical flight systems; and autonomous orbital flight, re-entry and landing."

View Full Article   Read More

Cosmic tsunamis can regenerate ‘dead’ galaxies

Excerpt from thespacereporter.com

Astronomers have recently discovered that giant cosmic shockwaves emanating from colliding galaxy clusters are capable of jumpstarting new star generation.

According to a Nature World News report, galaxies are often clustered into groups containing “red and dead” galaxies that stopped forming new stars long ago. Scientists now believe that these “dead” galaxies can be brought back to “life” by colossal cosmic tsunamis.

To uncover this phenomenon, an international team of researchers observed how galaxy clusters can absorb smaller clusters much as a growing city absorbs its suburbs. When galaxy clusters collide during this absorption process, a huge shockwave of energy is created. This shockwave can re-energize the star formation process, causing dormant galaxies to begin producing new stars again.

Scientists from the University of Lisbon and Leiden Observatory came to this conclusion after studying the merging galaxy cluster officially known as CIZA J2242.8+5301 and affectionately known as the “Sausage.” The Sausage cluster, located 2.3 billion light-years away, showed evidence of its dormant galaxies coming to life with a new round of star formation.

“We assumed that the galaxies would be on the sidelines for this act, but it turns out they have a leading role. The comatose galaxies in the Sausage cluster are coming back to life, with stars forming at a tremendous rate. When we first saw this in the data, we simply couldn’t believe what it was telling us,” Andra Stroe of Liden Observatory said in a statement.The researchers are observing an event that actually unfolded one billion years ago, when the 6-million-mph shockwave spread out from the collision of the clusters. The team believes that the new star formation was instigated by the shockwave’s affect on galactic gas.

“Much like a teaspoon stirring a mug of coffee, the shocks lead to turbulence in the galactic gas. These then trigger an avalanche-like collapse, which eventually leads to the formation of very dense, cold gas clouds, which are vital for the formation of new stars,” Stroe said.

Despite the vigorous production of new stars in this instance, the team believes that, after the initial effects of the tsunami take place, the galaxies fall to an even deeper state of dormancy than before.

David Sobral of the University of Lisbon explains that “star formation at this rate leads to a lot of massive, short-lived stars coming into being, which explode as supernovae a few million years later. The explosions drive huge amounts of gas out of the galaxies and with most of the rest consumed in star formation, the galaxies soon run out of fuel. If you wait long enough, the cluster mergers make the galaxies even more red and dead – they slip back into a coma and have little prospect of a second resurrection.”

The study was published in the journal Monthly Notices of the Royal Astronomical Society.

View Full Article   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
unless otherwise marked.

Terms of Use | Privacy Policy

Up ↑