Tag: invisibility

The Arcturian Group – March-12-2017

View Article Here   Read More

6 Supermaterials That Could Change Our World


Graphene

Excerpt from gizmodo.com

Graphene isn't the only game-changing material to come out of a lab. From aerogels nearly as light as air to metamaterials that manipulate light, here are six supermaterials that have the potential to transform the world of the future.

Self-healing Materials — Bioinspired Plastics

6 Supermaterials That Could Change Our World 
Self-healing plastic. Image credit: UIUC


The human body is very good at fixing itself. The built environment is not. Scott White at the University of Illinois at Urbana Champlain has been engineering bioinspired plastics that can self-heal. Last year, White's lab created a new polymer that oozes to repair a visible hole. The polymer is embedded with a vascular system of liquids that when broken and combined, clot just like blood. While other materials have been able to heal microscopic cracks, this new one repaired a hole 4 millimeter wide with cracks radiating all around it. Not big deal for a human skin, but a pretty big deal for plastic.

Engineers have also been envisioning concrete, asphalt, and metal that can heal themselves. (Imagine a city with no more potholes!) The rub, of course, lies in making them cheap enough to actually use, which is why the first applications for self-healing materials are most likely to be in space or in remote areas on Earth. 

Thermoelectric Materials — Heat Scavengers

6 Supermaterials That Could Change Our World 
Power blocks with thermoelectric material sued inside Alphabet Energy 's generator. Image credit: Alphabet Energy


If you've ever had a laptop burn up in your lap or touched the hot hood of car, then you've felt evidence of waste. Waste heat is the inevitable effect of running any that device that uses power. One estimate puts the amount of waste heat as two-thirds of all energy used. But what if there was a way to capture all that wasted energy? The answer to that "what if" is thermoelectric materials, which makes electricity from a temperature gradient.

Last year, California-based Alphabet Energy introduced a thermoelectric generator that plugs right into the exhaust pipe of ordinary generator, turning waste heat back into useful electricity. Alphabet Energy's generator uses a relatively cheap and naturally occurring thermoelectric material called tetrahedrite. Alphabet Energy says tetrahedrite can reach 5 to 10 percent efficiency.
Back in the lab, scientists have also been tinkering with another promising and possibly even more efficient thermoelectric material called skutterudite, which is a type of mineral that contains cobalt. Thermoelectric materials have already had niche applications—like on spacecraft—but skutterudite could get cheap and efficient enough to be wrapped around the exhaust pipes of cars or fridges or any other power-hogging machine you can think of. [Nature, MIT Technology Review, New Scientist]

Perovskites — Cheap Solar Cells

6 Supermaterials That Could Change Our World 
Solar cells made of perovskites. Image credit: University of Oxford


The biggest hurdle in moving toward renewable energy is, as these things always are, money. Solar power is getting ever cheaper, but making a plant's worth of solar cells from crystalline silicon is still an expensive, energy-intensive process. There's an alternative material that has the solar world buzzing though, and that's perovskites. 

Perovskites were first discovered over a century ago, but scientists are only just realizing its potential. In 2009, solar cells made from perovskites had a solar energy conversion efficiency of a measly 3.8 percent. In 2014, the number had leapt to 19.3 percent. That may not seem like much compared to traditional crystalline silicon cells with efficiencies hovering around 20 percent, but there's two other crucial points to consider: 1) perovskites have made such leaps and bounds in efficiency in just a few years that scientist think it can get even better and 2) perovskites are much, much cheaper. 

Perovskites are a class of materials defined by a particular crystalline structure. They can contain any number of elements, usually lead and tin for perovskites used in solar cells. These raw materials are cheap compared to crystalline silicon, and they can be sprayed onto glass rather than meticulously assembled in clean rooms. Oxford Photovoltaics is one of the leading companies trying to commercialize perovskites, which as wonderful as they have been in the lab, still do need to hold up in the real world. [WSJ, IEEE Spectrum, Chemical & Engineering News, Nature Materials]

Aerogels — Superlight and Strong

6 Supermaterials That Could Change Our World 
Image credit: NASA

Aerogels look like they should not be real. Although ghostly and ethereal, they can easily withstand the heat of a blowtorch and the weight of a car. The material is almost what exactly the name implies: gels where where the liquid has been replaced entirely by air. But you can see why it's also been called "frozen smoke" or "blue smoke." The actual matrix of an aerogel can be made of any number of substances, including silica, metal oxides, and, yes, also graphene. But the fact that aerogel is actually mostly made of air means that it's an excellent insulator (see: blowtorch). Its structure also makes it incredibly strong (see: car).

Aerogels do have one fatal flaw though: brittleness, especially when made from silica. But NASA scientists have been experimenting with flexible aerogels made of polymers to use insulators for spacecraft burning through the atmosphere. Mixing other compounds into even silica-based aerogels could make them more flexible. Add that to aerogel's lightness, strength, and insulating qualities, and that's one incredible material. [New Scientist, Gizmodo]

Metamaterials — Light Manipulators

If you've heard of metamaterials, you likely heard about it in a sentence that also mentioned "Harry Potter" and "invisibility cloak." And indeed, metamaterials, whose nanostructures are design to scatter light in specific ways, could possibly one day be used to render objects invisible—though it still probably wouldn't be as magical as Harry Potter's invisibility cloak. 

What's more interesting about metamaterials is that they don't just redirect visible light. Depending on how and what a particular metamaterial is made of, it can also scatter microwaves, radiowaves, or the little-known T-rays, which are between microwaves and infrared light on the electromagnetic spectrum. Any piece of electromagnetic spectrum could be manipulated by metamaterials. 

That could be, for example, new T-ray scanners in medicine or security or a compact radio antennae made of metamaterials whose properties change on the fly. Metamaterials are at the promising but frustrating cusp where the theoretical possibilities are endless, but commercialization is still a long, hard road. [Nature, Discover Magazine]

Stanene — 100 percent efficient conductor

6 Supermaterials That Could Change Our World 
The molecular structure of stanene. Image credit: SLAC


Like the much better known graphene, stanene is also made of a single layer of atoms. But instead of carbon, stanene is made of tin, and this makes all the difference in allowing stanene to possibly do what even wondermaterial extraordinaire graphene cannot: conduct electricity with 100 percent efficiency.

Stanene was first theorized in 2013 by Stanford professor Shoucheng Zhang, whose lab specializes in, along other things, predicting the electronic properties of materials like stanene. According to their models, stanene is a topological insulator, which means its edges are a conductor and its inside is an insulator. (Think of a chocolate-covered ice cream bar. Chocolate conductor, ice cream insulator.) 

This means stanene could conduct electricity with zero resistance even, crucially, at room temperature. Stanene's properties have yet to been tested experimentally—making a single-atom sheet tin is no easy task—but several of Zhang's predictions about other topological insulators have proven correct.

If the predictions about stanene bear out, it could revolutionize the microchips inside all your devices. Namely, the chips could get a lot more powerful. Silicon chips are limited by the heat created by electrons zipping around—work 'em too fast and they'll simply get too hot. Stanene, which conducts electricity 100 percent efficiency, would have no such problem. [SLAC, Physical Review Letters, Scientific American]

View Article Here   Read More

Time travel and teleporting ‘a reality for today’s children’

Excerpt from telegraph.co.uk

By Rhiannon Williams


Travelling through time, invisibility cloaks and teleporting could all happen within today's children's lifetimes, experts have predicted



Children could be travelling between centuries as soon as the year 2100, while teleportation could become a regular occurence by around 2080, professors from Imperial College London and the University of Glasgow have said. 
"The good thing about teleportation is that there is no fundamental law telling us that it cannot be done and with technical advances I would estimate teleportation that we see in the films will be with us by 2080,” said Dr. Mary Jacquiline Romero from the School of Physics and Astronomy, University of Glasgow. 
“Teleporting a person, atom by atom, will be very difficult and is of course a physicist's way, but perhaps developments in chemistry or molecular biology will allow us to do it more quickly. The good thing about teleportation is that there is no fundamental law telling us that it cannot be done and with technical advances I would estimate teleportation that we see in the films will be with us by 2080,” she said. 
“Time travel to the future has already been achieved, but only in tiny amounts. The record is 0.02 seconds set by cosmonaut Sergei Krikalev. Whilst that doesn't sound too impressive, it does show that time travel to the future is possible and that the amount of time travel couldn't be far greater," he argued. 

“If you travelled through space on a big loop at 10 per cent the speed of light for what seemed to you like six months, approximately six months and one day would have passed on Earth. You'd have time travelled a day into the future. Travel at the same speed for 10 years and you'll time travel nearly three weeks into the future. I would say we are looking at 2100 as a very optimistic timescale for travelling weeks into the future.” 

Invisibility cloaks, as featured in Harry Potter, could be "entirely feasible" within the next 10 to 20 years, Professor Chris Phillips, Professor of Experimental Solid State Physics at Imperial College London said. 



Harry tests his invisibility cloak for the first time


“One way to create an ‘invisibility cloak’ is to use adaptive camouflage, which involves taking a film of the background of an object or person and projecting it onto the front to give the illusion of vanishing, " he added. 

"We’re actually not that far away from this becoming a reality – rudimentary technology versions of this have already been created – but the main problem is that the fibre-like structures in the adaptive camouflage need to be so tightly woven that it’s incredibly labour intensive. With developments such as 3D printing allowing us to create previously impossible materials, it’s entirely feasible that we could see a ‘Harry Potter’-like invisibility cloak within the next 10 to 20 years.” 

The research was conducted by the Big Bang UK Young Scientists and Engineers Fair, which compared the predictions of scientists to that of a panel of 11-16 year-olds. 

While their speculation was largely in line with the experts' expectations, the children thought time travel could be feasible by 2078. They also dramatically overestimated when they might be able to become space tourists - anticipating it might take another 30 years, when commercial space flights are due to launch in 2015.

View Article Here   Read More

New invisibility cloak device can hide almost anything



invisible

digitaltrends.com

Hats off to scientists at the University of Rochester in New York, who have managed to produce a cheap ‘invisibility cloak’ effect using readily available materials and a lot of clever thinking. Through a combination of optical lenses, any object that passes behind a certain line of sight can be made to disappear from view.

‘The Rochester Cloak’, as it’s being dubbed, uses a simplified four-lens system that essentially bends light around any objects you put into the middle of the chain — you’re able to see the area in the background as normal, but not the item in the foreground. According to its inventors, it can be scaled up using any size of lens, and the team responsible for the setup has used standard, off-the-shelf hardware.

“People have been fascinated with cloaking for a very long time,” said John Howell, a Professor of Physics at the University. “It’s recently been a really popular thing in science fiction and Harry Potter… I think people are really excited about the prospect of just being invisible.”

“From what we know this is the first cloaking device that provides three-dimensional, continuously multidirectional cloaking,” said doctoral student Joseph Choi, one of the team who worked on the project, when speaking to Reuters. “I imagine this could be used to cloak a trailer on the back of a semi-truck so the driver can see directly behind him. It can be used for surgery, in the military, in interior design, art.”

What makes this system so interesting is that it’s simple, inexpensive and capable of working at multiple angles, as long as the object remains inside the series of lenses. Howell and Choi say it cost them $1,000 to get all of the necessary equipment together, but it can be done more cheaply. A patent is pending for their invention but the pair have put together instructions on making your own Rochester Cloak at home for less than $100.


Click to zoom

View Article Here   Read More

Update on the Ascension Process

There has been many questions and confusion as of late as to how the Ascension Process is going, what has happened, and what has yet to happen. The process of Ascension (also referred to as raising consciousness or raising vibration) is being activated by a Universal energy known as the Photon Belt.The Photon Belt has been named Dark Matter by the scientific community, and is currently being studied by those in the fields of Astronomy and Astrophysics. The Photon Belt appears as a dark st [...]

View Article Here   Read More

Birthing a Better Future

{mainvote}

a message from Gillian MacBeth-Louthan

Wednesday, 13 July, 2011  

You each walk into a stairway of questing, of questioning, of asking, what is the next step of my journey, of my mission? You stand at the top of the stair...

View Article Here   Read More

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑