Tag: laser (page 1 of 6)

Science: Plants Have Senses and Can Hear, Feel and Identify Attackers

Alisa Opar, GuestThe plant world is a violent place. When munching caterpillars or grazing cattle set their sights on a luscious leaf, a plant can’t hightail it out of harm’s way. Instead, flora fight back with noxious chemicals. But what repels one critter may not work on the next hungry mouth, explains Heidi Appel, a senior research scientist in the Bond Life Sciences Center at the University of Missouri. She’s found that some plants can actual [...]

View Article Here   Read More

This revolutionary discovery could help scientists see black holes for the first time


supermassive black hole
Artist's concept of the black hole.



Excerpt from finance.yahoo.com
Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.
But that could soon change.
Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.
Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.
And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves



.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.
Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.
"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."
Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening

In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.
You'll want to turn up the volume.
What you're seeing and hearing are two different things.
The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.
"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.
Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 

Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.


.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.
What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.
Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.

View Article Here   Read More

Boeing to Create a Star Wars-like Forcefield (Yes, an actual forcefield) ~ Video

Excerpt from usatoday.comStar Wars jokes aside, Boeing actually just patented a force field that would use energy to deflect explosions. For real; it's called, "method and system for shockwave attenuation via electromagnetic arc."According to the pat...

View Article Here   Read More

Scientist Claims to Discover Sounds of Stars






Excerpt from clapway.com

If you can remember your primary school’s astronomy classes, the surface of a star is a very volatile place with tons of chemical reactions and extreme motions, and with immense gravitational pull. Generally a place you would not want to be. But researchers are now saying that if you were to orbit a star, it may be possible, with the right equipment, to hear what a star is saying! Or Singing?
Would you want to hear the sounds of stars?

The sound, unfortunately, is so high pitched that no mammal, not even a dolphin or bat, would be able to hear it, and couldn’t be heard anyway because space is a vacuum and there is no air medium for the sound to travel in.

With a frequency of nearly one trillion hertz, the sound was not only unexpected, but six million times higher than what any mammal can hear. But the researchers have developed a method to hear what they poetically refer to as “singing” or a star’s “song.”

Britain’s University of York’s researchers of hydrodynamics – the study of fluids in motion – fired a laser beam at the plasma in the laboratory and found that within a trillionth of a second, the plasma quickly moved from high-density to low-density areas.Plasma is a state of matter that makes up most things in the known universe and a few things on earth like lightning strikes and neon signs. It is basically a gas that has been charged with enough energy to loose the electrons from the atoms holding them together.

The spot where the low-density and high-density areas meet led to what the University researchers called a “traffic jam,” and resulted in an apparent sound wave, allowing us to know the sounds of stars.

Though this was achieved in the laboratory, scientists have yet to try to hear the sounds of a real star.

Dr. Pasley, a scientist from the Tata Institute of Fundamental Research in Mumbai, India, , said: “One of the few locations in nature where we believe this effect would occur is at the surface of stars. When they are accumulating new material stars could generate sound in a very similar manner to that which we observed in the laboratory–so the stars might be singing–but since sound cannot propagate through the vacuum of space, no-one can hear them.”

The technique used to observe the sound waves in the laboratory sort of works like a police speed camera, allowing scientists to accurately measure how the fluid would sound at the point of being struck by the laser at very minute timescales. The research was published in Physical Review Letters.

Perhaps in the future we might be able to listen in on the sounds of stars instead of just viewing it, and hear what they have to say!

View Article Here   Read More

Boeing Receives Patent for a Force Field that Protects U.S. Military Vehicles from Blasts

Excerpt from en.yibada.com The Boeing Company has received a patent from the U.S. Patent and Trademark Office for a device that generates a "force field" which deflects blasts from shells and explosive weapons. Technically, the patent is f...

View Article Here   Read More

Japan comes closer to beaming solar power from SPACE: Mitsubishi makes breakthrough in sending energy wirelessly



Japanese scientists say they have successfully transmitted energy wirelessly in a breakthrough for future solar space power systems. While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth
Japanese scientists say they have successfully transmitted energy wirelessly in a breakthrough for future solar space power systems. While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth


  • Excerpt from dailymail.co.uk
  • By Ellie Zolfagharifard
  • Microwaves delivered 1.8 kw of power - enough to run an electric kettle
  • Power was sent through the air with to a receiver 170ft (55 metres) away
  • Technology may someday help tap vast solar energy available in space
  • Jaxa's plan is to eventually have sunlight-gathering panels and antennae set up about 22,300 miles (36,000km) from the Earth


Japanese scientists have successfully transmitted energy wirelessly in a breakthrough that could pave the way for space-based solar power systems.

Mitsubishi researchers used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver 170ft (55 metres) away.

While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth.

'This was the first time anyone has managed to send a high output of nearly two kilowatts of electric power via microwaves to a small target, using a delicate directivity control device,' said a spokesman for the Japan Aerospace Exploration Agency (Jaxa) said.

The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system.

Solar power generation in space has many advantages over its Earth-based cousin, notably the permanent availability of energy, regardless of weather or time of day.

While man-made satellites, such as the International Space Station, have long since been able to use the solar energy that washes over them from the sun, getting that power down to Earth where people can use it has been the thing of science fiction.

The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away
The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away
The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away


In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth
 In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth


But the Japanese research offers the possibility that humans will one day be able to farm an inexhaustible source of energy in space.
The idea, said the Jaxa spokesman, would be for microwave-transmitting solar satellites - which would have sunlight-gathering panels and antennae - to be set up about 22,300 miles (36,000km) from the Earth.

'But it could take decades before we see practical application of the technology - maybe in the 2040s or later,' he said.

'There are a number of challenges to overcome, such as how to send huge structures into space, how to construct them and how to maintain them.'

The idea of space-based solar power generation emerged among US researchers in the 1960s and Japan's SSPS programme, chiefly financed by the industry ministry, started in 2009, he said.

COULD A SOLAR FARM IN SPACE POWER OUR FUTURE?

Space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way
Space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way


Solar power has had a difficult start on Earth thanks to inefficient panels and high costs. But in space, scientists believe it could transform the way we generate energy.

Now, the space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way.

Within 25 years, the country plans to make space-based solar power a reality, according to a proposal from the Japan Aerospace Exploration Agency (Jaxa).

In a recent IEEE article by Susumu Sasaki, a professor emeritus at Jaxa, outlined the agency's plans create a 1.8 mile long (3 km) man-made island in the harbour of Tokyo Bay.

The island would be studded with 5 billion antennas working together to convert microwave energy into electricity.

The microwaves would be beamed down from a number of giant solar collectors in orbit 22,400 miles (36,000 km) above the Earth. 
Resource-poor Japan has to import huge amounts of fossil fuel.
It has become substantially more dependent on these imports as its nuclear power industry shut down in the aftermath of the disaster at Fukushima in 2011.

In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth.

Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt.

Energy captured by these panels would then be sent to Earth using microwaves and laser lights could be beamed directly to countries where it is needed.

According to the plans, the project would produce around 13,000 terrawatts of continuous solar energy. At present, the world's population consumes about 15 terawatts of power each year.

The company claims the plans would not only provide an 'almost inexhaustible' energy supply, it would stop the rise of global warming caused by carbon dioxide from current energy sources. 

Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt
Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt

View Article Here   Read More

Exoplanet Imager Begins Hunt for Alien Worlds


This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus.


Excerpt from news.discovery.com

By Ian O'Neill

A new instrument attached to one of the most powerful telescopes in the world has been switched on and acquired its ‘first light’ images of alien star systems and Saturn’s moon Titan.
The Spectro-Polarimetric High-contrast Exoplanet REsearch (or SPHIRES) instrument has been recently installed at the ESO’s Very Large Telescope’s already impressive suite of sophisticated instrumentation. The VLT is located in the ultra-dry high-altitude climes of the Atacama Desert in Chile.

In the observation above, an ‘Eye of Sauron‘-like dust ring surrounding the star HR 4796A in the southern constellation of Centaurus, a testament to the sheer power of the multiple technique SPHIRES will use to acquire precision views of directly-imaged exoplanets.

The biggest problem with trying to directly image a world orbiting close to its parent star is that of glare; stars are many magnitudes brighter that the reflected light from its orbiting exoplanet, so how the heck are you supposed to gain enough contrast between the bright star and exoplanet to resolve the two? The SPHIRES instrument is using a combination of three sophisticated techniques to remove a star’s glare and zero-in on its exoplanetary targets.

This infrared image of Saturn’s largest moon, Titan, was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014.
ESO 
The first technique, known as adaptive optics, is employed by the VLT itself. By firing a laser into the Earth’s atmosphere during the observation, a gauge on the turbulence in the upper atmospheric gases can be measured and the effects of which can be removed from the imagery. Any blurriness caused by our thick atmosphere can be adjusted for.

Next up is a precision coronograph inside the instrument that blocks the light from the target star. By doing this, any glare can be removed and any exoplanet in orbit may be bright enough to spot.

But the third technique, which really teases out any exoplanet signal, is the detection of different polarizations of light from the star system. The polarization of infrared light being generated by the star and the infrared glow from the exoplanet are very subtle. SPHIRES can differentiate between the two, thereby further boosting the observation’s contrast.

“SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!” said Jean-Luc Beuzit, of the Institut de Planétologie et d’Astrophysique de Grenoble, France and Principal Investigator of SPHERE, in an ESO press release.

The speed and sheer power of SPHIRES will be an obvious boon to astronomers zooming in on distant exoplanets, aiding our understanding of these strange new worlds.


The star HR 7581 (Iota Sgr) was observed in SPHERE survey mode (parallel observation in the near infrared with the dual imaging camera and the integral field spectrograph ). A very low mass star, more than 4000 times fainter that its parent star, was discovered orbiting Iota Sgr at a tiny separation of 0.24". This is a vital demonstration of the power of SPHERE to image faint objects very close to bright ones.
ESO

View Article Here   Read More

Let There Be Light! Photo Shows Light As Wave And Particle For First Time


Light as a particle and a wave


Excerpt from escapistmagazine.com

According to quantum mechanics light acts as both a particle and a wave, but now we can finally see what that looks like.

Quantum mechanics is an incredibly complex field for a simple reason: So much of what it studies can be two different things at the exact same time. Light is a great example since it behaves like both a particle and a wave, but only appears in one state during experiments. Mathematically speaking, we have to treat light as both ways for the universe to make sense but actually confirming it visually has been impossible. Or at least that was the case until scientists from Switzerland's École polytechnique fédérale de Lausanne developed their own unique photography method.
The image was created by shooting a pulse of laser light at a metallic nanowire to make its charged particles vibrate. Next the scientists fired a stream of electrons past the wire holding the trapped light. When the two collided, it created an energy exchange that could be photographed from the electron microscope.

So what does this mean when looking at the photograph? When the photons and electrons collide, they either slow down or speed up, which creates a visualization of a light wave. At the same time the speed change appears as a quanta - packets of energy - transferred between the electrons and photons as particles. In other words, it's the first case of observing light particles and waves simultaneously.

"This experiment demonstrates that, for the first time ever, we can film quantum mechanics - and its paradoxical nature - directly," research leader Fabrizio Carbone explained. This has enormous implications not only for quantum research, but also quantum-based technologies still in development. "Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing," he continued.

The experiment results were posted in today's Nature Communications, which will help other scientists build on this research with further studies. After all, it's not like we've unlocked all of light's secrets yet - we can barely even tell what color a dress is sometimes.

View Article Here   Read More

How will life on earth compare to life for the Mars One pioneers?


To infinity and beyond? Maggie Lieu
To infinity and beyond? Maggie Lieu Photo: Peter Quinnell


From telegraph.co.uk
By Nick Curtis

On a different planet - Nick Curtis imagines a message from 'Martianaut' Maggie Lieu to her parents back at home


Mars Mission, British Martianaut Maggie Lieu’s Log
Day One: Stardate 22/02/2025. 

Hello Mission Control.... Just kidding! Hi mum, hi dad, or should I say earthlings! 
Well, me and Bruce the Australian Martianaut finally touched down beside the Herschel II Strait on the red planet today, the last of 12 pairs to arrive - though as you know it was touch and go. Ten years of training and research almost went down the drain when Google got hit by a massive retrospective tax bill and had to withdraw all its branded sponsorship from the starship at the last minute: 

fortunately Amazon stepped in, on the agreement we install its first matter transference delivery portal (“It’s there before you know it”) here. And rename the ship Bezos 1, of course 
The trip was textbook, with both of us uploading videos on how to apply makeup and bake cupcakes in space direct to the Weibo-spex of our crowdsource funders in China - great practice for The Great Martian Bakeoff on BBC 12 next year (subscribers only). The one hairy moment was a near miss with that Virgin Galactic rocket, Beardie IV, that went AWOL five years ago. We were so close we could see Leonardo diCaprio’s little screaming face pressed against his porthole. And Kim Kardashian’s bum pressed against hers - though it’s looking kinda old now and I hoped we’d seen the last of it.


So what can I tell you? When we landed the others threw us a party with full fat milk, rare beef and waffles (the only official space superfoods since it was discovered that kale and quinoa cause impotence). The landscape is pretty barren, just acres of rolling sand and no one in sight, sort of like Greece after it left the Eurozone and the entire population moved to Germany. Or like the so-called Caliphate after Islamic State finally perfected its time machine and managed to transport itself and all its followers back to the 12th century. 

The temperature outside is about 20c, so a lot cooler than it is at home since the ice caps melted. There’s water here, but not as much as is now covering Indonesia, Holland and Somerset. The atmosphere is 96% carbon dioxide so Juan, the Spanish Martianaut, had to keep his suit on when he went out to smoke. He tried to get us all to buy duty free for him in Mexico City spaceport before we left, now that a pack of cigarettes costs 450 Euros in the shops, and they’ve been camouflaged so you can’t find them. 

Maggie Lieu (Guardian)


The construction-droids did a pretty good job building Mars Camp out of the recycled parts of all those closed Tesco Metros. They say we have enough air up here to last 20 years, Earth’s stocks of storable oxygen having increased tenfold when the European Parliament collapsed following the expenses scandal. I still can’t believe that Dasha Putin-Mugabe was claiming for SIX driverless cars while she was EU President, and employing her wife as her accountant. And her being the first transgender Russian lesbian to hold the office, too. 

Speaking of politics, how is life in coalition Britain? Who has the upper hand at the moment? UKIP? Scots Nats? The Greens? or those nutters from Cornwall, Mebion Kernow? Or are they underwater now. And how is young Straw doing now Labour is the smallest party in Parliament, after the New New New Conservatives? Hard to believe it’s three years since the last Lib Dem lost her seat. 

I gather that some things have improved internationally now that Brian Cox has developed his own time machine at the Wowcher-Hawking Institute in Cambridge, and worked out that the entire world can now transport all its waste products back to the Caliphate in the 12th century. 

We can see the Earth from here through the Clinton2020 Telescope that the US president endowed us with after her brief period in office. The joke up here is that she did it to keep a proper eye either on her husband (though he doesn’t get around so much any more, obviously) or on what President Palin is up to. I still can’t believe that she sold Alaska to Russia to pay the compensation bill for the Grand Canyon Fracking Collapse. 

Even through the Clinton2020 the Earth looks pretty small, though at times, when the stars are really bright, we can see the Great Wall 2 ring of laser satellites that China has pointed at Russia to discourage any more “accidental” incursions. 

Our team up here is like a microcosm of human life on earth. Well, up to a point. As you know the French and Italian Martianauts were expelled from the team before lift-off, because of some scandal or other. We weren’t told if it was financial or sexual but a space bra and a data stick with three million Bitcoins on it were found in the airlock. 

The African and Brazilian Martianauts swan around the place as if they PERSONALLY solved the world’s food and energy problems.
And the North Korean guy just sits in the corner, muttering into some device up his sleeve and scowling. All the freeze-dried cheese has gone and he’s looking quite fat, if you get my meaning. 

I don’t get much time to myself, what with work, the non-denominational Sorry Meetings where we apologise in case we’ve accidently offended someone’s beliefs, and the communal space-pilates sessions (the North Korean guy skips those so he may be in line for a compulsory gastric band, as mandated by the Intergalactic Health Organisation). 

I always try and upload the latest Birmingham City Games onto my cortex chip when I feel homesick: I know it's not fashionable, but I think football got better when they replaced the players with robots and the wage bill - and the number of court cases - dropped to zero. I know the electricity bill is massive, but the new Brazilian solar technology should fix that. 

Anyway, got to run now. We’re putting together a bid to have the 2036 Olympics up here. 

Bye, or as we say on Mars - see you on the dark side.

View Article Here   Read More

Stephen Hawking warns that attempting to contact aliens could invite disaster

Excerpt from cambridge-news.co.ukWhat is known as Active Seti will be under serious discussion this week at the annual meeting of the American Association for the Advancement of Science (AAAS) in San Jose, California. Seti spokesman Dr Seth...

View Article Here   Read More

Scientists discover organism that hasn’t evolved in more than 2 billion years



Nonevolving bacteria
These sulfur bacteria haven't evolved for billions of years.
Credit: UCLA Center for the Study of Evolution and the Origin of Life

Excerpt from natmonitor.com
By Justin Beach

If there was a Guinness World Record for not evolving, it would be held by a sulfur-cycling microorganism found off the course of Australia. According to research published in the Proceedings of the National Academy of Sciences, they have not evolved in any way in more than two billion years and have survived five mass extinction events.
According to the researchers behind the paper, the lack of evolution actually supports Charles Darwin’s theory of evolution by natural selection.
The researchers examined the microorganisms, which are too small to see with the naked eye, in samples of rocks from the coastal waters of Western Australia. Next they examined samples of the same bacteria from the same region in rocks 2.3 billion years old. Both sets of bacteria are indistinguishable from modern sulfur bacteria found off the coast of Chile.





“It seems astounding that life has not evolved for more than 2 billion years — nearly half the history of the Earth. Given that evolution is a fact, this lack of evolution needs to be explained,” said J. William Schopf, a UCLA professor of earth, planetary and space sciences in the UCLA College who was the study’s lead author in a statement.
Critics of Darwin’s theory of evolution might be tempted to jump on this discovery as proof that Darwin was wrong, but that would be a mistake.
Darwin’s work focused more on species that changed, rather than species that didn’t. However, there is nothing in Darwin’s work that states that a successful species that has found it’s niche in an ecosystem has to change. Unless there is change in the ecosystem or competition for resources there would be no reason for change.
“The rule of biology is not to evolve unless the physical or biological environment changes, which is consistent with Darwin. These microorganisms are well-adapted to their simple, very stable physical and biological environment. If they were in an environment that did not change but they nevertheless evolved, that would have shown that our understanding of Darwinian evolution was seriously flawed.” said Schopf, who also is director of UCLA’s Center for the Study of Evolution and the Origin of Life.
It is likely that there were genetic mutations in the organisms. Mutations are fairly random and happen in all species, but unless those mutations are improvements that help the species function better in the environment, they usually do not get passed on.
Schopf said that the findings provide further proof that Darwin’s ideas were right.
The oldest fossils analyzed for the study date back to the Great Oxidation Event. This event, which occurred between 2.2 and 2.4 billion years ago, saw a substantial increase in Earth’s oxygen levels. That period also saw an increase in sulfates and nitrates, which is all that the microorganisms would have needed to survive and reproduce.
Shopf and his team used Raman spectroscopy, which allows scientists to examine the composition and chemistry of rocks as well as confocal laser scary microscopy to generate 3-D images of fossils embedded in rock.
The research was funded by NASA Astrobiology Institute, in the hope that it will help the space agency to find life elsewhere.

View Article Here   Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here   Read More

Discovery Sparks Interest – NASA’s Mission to Mars Gets Its Own New Show

Excerpt from sciencetimes.comOften in the media, it's what's new and fresh that brings in the ratings. But what about looking for something potentially millions of years old? What if it wasn't on this planet even? Peak your interest yet? Well, if so...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑