Tag: maximum (page 1 of 3)

HARMONIZING PHYSICAL EMOTIONAL MENTAL BODY ARCHANGEL MICHAEL LM-11-2016 Galactic Federation of Light

View Article Here   Read More

Clearing F E A R Implants Activating New Chakras

View Article Here   Read More

Clearing F.E.A.R. Implants. Activating New Chakras.

View Article Here   Read More

Cintamani Update

  Since I have released intel about the Cintamani stone, many pieces of this sacred stone have found their way into the hands of dedicated Lightworkers and Lightwarriors and will serve as transmitters of energies of compression breakthrough at the...

View Article Here   Read More

Cintamani

Cintamani is a sacred stone which came from Sirius star system. Millions of years ago, during a Galactic superwave, a planet orbiting Sirius A exploded. Its fragments traveled in all directions, some of them reaching Earth after long journey through in...

View Article Here   Read More

MAKE THIS VIRAL! FREE THE COLONIES!

FREE THE COLONIES! MAY 30TH, 2015 It is time to take action again! It is time to take the destiny of our world and the Solar System in our own hands! Therefore we will meet in groups large and small, as individuals and couples, on May 30th this year. ...

View Article Here   Read More

Here’s Why Tesla’s Battery Is A Big Deal


Excerpt from forbes.com

It’s more about where the market and product are going than where they are today. Think about a complementary system of components:

  1. The big grid – always on, highly reliable power which is expensive during peak demand hours, i.e. when a family actually wants to use the power. But usually the electricity is cheap at night when no one wants to use it and those big baseload plants that are hard (or very hard in the case of nuclear) to slow down are still pumping out power. And sometimes that power is provided by strong night winds.
  2. Home solar – Don’t forget that Tesla’s CEO, Musk, is also Chairman of SolarCity which provides zero down leasing. Home solar is often poorly aligned to peak usage, with installers looking for maximum generation with south-facing solar panels rather than maximum generation during peak with south-west facing panels. Then there are the homes with roofs that are poorly aligned to the sun regardless, so imperfect generation is all that is possible. And that peak generation isn’t necessarily perfectly aligned with peak cost of grid electricity either, but merely overlaps with it.
  3. Home storage – Maximum generation alignment of home solar matters less when you can carry forward the unconsumed electricity from solar panels to your evening of cooking, washing dishes, washing clothes, and streaming Netflix on your 40″ tv. And cheap electricity you can store at night and consume when electricity is really expensive is valuable as well.
So these components exist, but to be fair, they existed before Tesla got into the home storage business and have for a long time. And Tesla’s offering costs about twice as much as more typical lead-acid batteries commonly used for the purpose. So why is this particular home storage battery getting so much attention?
  1. Hype – Don’t underestimate the marvel that is Musk’s ability to get attention. The man is a rock star of event unveiling.
  2. Net metering – Right now, there is a lot of conflict between utilities and home solar users and installation companies. Net metering is the requirement that home solar generators get paid for electricity that they produce and pump into the grid, and only pay for the electricity that they draw from the grid. Output vs input is the net. Home solar used to be an advantage to utilities — reduced peak demand — but has become a liability — reduced or even negative revenue from users of the grid. Basically, utilities still have to pay for the grid which home solar generators use, then they lose revenue or outright pay the home solar generator who is getting use of the grid for free. Since utilities pay for the grid out of electricity revenue, they are starting to demand that people with home solar who aren’t paying much for electricity start paying for grid usage to make up for it. This is getting mixed reviews, as you can understand, but in the USA especially is leading to a desire by many to be completely grid free, a dubious value proposition. Tesla’s hype fell into an emerging market opportunity of people who had solar on their roof, didn’t have batteries but are worried that they’ll be forced to pay more.
  3. Time-of-use billing – Combined with smart meters, time-of-use billing is becoming much more common in utilities in the developed world. This model is simple: reduce demand during peak periods by increasing the price, typically combined with incenting shift of demand to off-peak times by lowering the price. Flattening demand curves, especially peaks, is very advantageous for grid managers because they have to have capacity for the peak. This enables storage to time-shift consumption and save at least some money.
  4. Design – Previous storage units are collections of lead acid batteries, basically the same thing you have in your car, but scaled vertically and horizontally. They aren’t pretty, they are heavy, they take up floor space, they require maintenance, and they are pretty much a toxic addition to homes if breached or even if the tops are removed. Tesla’s model is sleek, hangs on a wall and is much more chemically inert with no liquids. It’s a benign home appliance as opposed to an industrial object (much as some people like the industrial aesthetic at home, it’s less common).
  5. The Gigafactory – What Tesla has going for it is that it is building the world’s largest battery factory, and likely expanding it now that the storage line has taken off so brilliantly. Pretty much everyone paying attention knows that Tesla is already producing batteries much more cheaply on a per KWH capacity at greater volume, and the Gigafactory is going to ramp that up. Battery storage has been dropping in price per KWH of capacity for a long time, but it’s closing in on a cusp point where it’s going to be worth it for average consumers to store at least some electricity.
What all of this adds up to is that home battery storage isn’t economical today, but it’s viable for a subset of the high-consuming market, it’s desirable for its green credentials, it’s desirable due to the hype factor and it will defray its costs. And that the home storage market tomorrow will be viable for a much larger percentage of the market with increasing systemic pressures and pricing that will make it more attractive. Tesla’s home storage battery is getting attention because they are staking a major claim to a market which is expected to increase dramatically.
Why is Tesla’s battery a big deal?: originally appeared on Quora:

Answer by Mike Barnard, Energy guy, on Quora

View Article Here   Read More

Black Holes, the Large Hadron Collider, & Finding Parallel Universes

Excerpt from huffingtonpost.comI am a huge science enthusiast and an unabashed science fiction fan. There are tons of really cool stories out there that fire the imagination and even inspire young people to go into science. (I know they did me.) ...

View Article Here   Read More

A Complete Guide to the March 20th Total Solar Eclipse


Credit
Totality! The 2012 total solar eclipse as seen from Australia. Credit and copyright: www.hughca.com.



Excerpt from universetoday.com



The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.


Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.


Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .
2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.


Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.


Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…
The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.


Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.



This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.



What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!


Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.






Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com


Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.


Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.


Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.


But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:




Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.


Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.


Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:


View Article Here   Read More

Google’s AI Program Is Better At Video Games Than You





pcmag.com

IBM's Watson supercomputer may be saving lives and educating children, but Google's new AI program can master video games without human guidance.

The artificial intelligence system from London-based DeepMind, which Google acquired last year for a reported $400 million, represents a major step toward a future of smart machines.

Computers running the deep Q-network (DQN) algorithm were exposed to 49 retro games on the Atari 2600 and told to play them, without any direction from researchers. Using the same network architecture and tuning parameters, the machines were given only raw screen pixels, available actions, and game score as input.

For each level passed or high score earned, the computer was automatically rewarded with a digital treat.

"Strikingly, DQN was able to work straight 'out of the box' across all these games," DeepMind's Dharshan Kumaran and Demis Hassabis wrote in a blog post. The executives cited classic titles like Breakout, River Raid, Boxing, and Enduro.

The AI crushed even the most expert humans at 29 games, sometimes composing what the creators called "surprisingly far-sighted strategies" that allowed maximum scoring possibilities. It also outperformed previous machine-learning methods in 43 of 49 instances.

VIEW ALL PHOTOS IN GALLERY
Google DeepMind's findings were presented in a paper published in this week's Nature journal, which describes the key DQN features that allow it to learn.

"This work offers the first demonstration of a general purpose learning agent that can be trained end-to-end to handle a wide variety of challenging tasks," the researchers said. "This kind of technology should help us build more useful products."

Imagine asking the Google app to complete a complex task—like plan a backpacking trip through Europe, for example.

Google's DeepMind also hopes its technology will give researchers new ways to make sense of large-scale data, opening the door to discoveries in fields like climate science, physics, medicine, and genomics.

"And it may even help scientists better understand the process by which humans learn," Kumaran and Hassabis said, citing physicist Richard Feynman, who famously said, "What I cannot create, I do not understand."

For more, see How DeepMind Can Bring Google Artificial Intelligence to Life in the slideshow above.

View Article Here   Read More

NASA Wants to Send a Submarine to Titan’s Seas ~ Video



Titan


Excerpt from news.discovery.com

In a sneak peek of a possible future mission to Saturn’s moon Titan, NASA has showcased their vision of a robotic submersible that could explore the moon’s vast lakes of liquid methane and ethane.

Studying Titan is thought to be looking back in time at an embryonic Earth, only a lot colder. Titan is the only moon in the solar system to have a significant atmosphere and this atmosphere is known to possess its own methane cycle, like Earth’s water cycle. Methane exists in a liquid state, raining down on a landscape laced with hydrocarbons, forming rivers, valleys and seas.

Several seas have been extensively studied by NASA’s Cassini spacecraft during multiple flybys, some of which average a few meters deep, whereas others have depths of over 200 meters (660 feet) — the maximum depth at which Cassini’s radar instrument can penetrate.


So, if scientists are to properly explore Titan, they must find a way to dive into these seas to reveal their secrets.

At this year’s Innovative Advanced Concepts (NIAC) Symposium, a Titan submarine concept was showcased by NASA Glenn’s COMPASS Team and researchers from Applied Research Lab.

Envisaged as a possible mission to Titan’s largest sea, Kracken Mare, the autonomous submersible would be designed to make a 90 day, 2,000 kilometer (1,250 mile) voyage exploring the depths of this vast and very alien marine environment. As it would spend long periods under the methane sea’s surface, it would have to be powered by a radioisotope generator; a source that converts the heat produced by radioactive pellets into electricity, much like missions that are currently exploring space, like Cassini and Mars rover Curiosity.

Communicating with Earth would not be possible when the vehicle is submerged, so it would need to make regular ascents to the surface to transmit science data.

But Kracken Mare is not a tranquil lake fit for gentle sailing — it is known to have choppy waves and there is evidence of tides, all contributing to the challenge. Many of the engineering challenges have already been encountered when designing terrestrial submarines — robotic and crewed — but as these seas will be extremely cold (estimated to be close to the freezing point of methane, 90 Kelvin or -298 degrees Fahrenheit), a special piston-driven propulsion system will need to be developed and a nitrogen will be needed as ballast, for example.

This study is just that, a study, but the possibility of sending a submersible robot to another world would be as unprecedented as it is awesome.

Although it’s not clear at this early stage what the mission science would focus on, it would be interesting to sample the chemicals at different depths of Kracken Mare.

“Measurement of the trace organic components of the sea, which perhaps may exhibit prebiotic chemical evolution, will be an important objective, and a benthic sampler (a robotic grabber to sample sediment) would acquire and analyze sediment from the seabed,” the authors write (PDF). “These measurements, and seafloor morphology via sidescan sonar, may shed light on the historical cycles of filling and drying of Titan’s seas. Models suggest Titan’s active hydrological cycle may cause the north part of Kraken to be ‘fresher’ (more methane-rich) than the south, and the submarine’s long traverse will explore these composition variations.”

A decade after the European Huygens probe landed on the surface of Titan imaging the moon’s eerily foggy atmosphere, there have been few plans to go back to this tantalizing world. It would be incredible if, in the next few decades, we could send a mission back to Titan to directly sample what is at the bottom of its seas, exploring a region where the molecules for life’s chemistry may be found in abundance.



View Article Here   Read More

How to See the Ghostly Zodiacal Light of the Night Sky

Excerpt from space.com Over the next two weeks, you have an excellent chance to spot one of the most rarely observed objects in the sky, the zodiacal light. The zodiacal light takes its name from the ancient band of 12 constellations through which the...

View Article Here   Read More

Opening of the Box

Ihave been contacted by a certain benefactor who is willing to donate considerable funds to sponsor projects that are supporting the Lightworkers and Light forces as we are approaching the planetary liberation. This charitable account is an ongoing fun...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑