Tag: Mysterious (page 1 of 7)

The Blue and the Event

Now that the circus of the US elections is over, we can finally focus again on real intel.The emergence of the Goddess DouMu to the surface of the planet a few years ago is the first sign of the return of the Light forces after their 26,000 years long ...

View Article Here   Read More

Saint Germain – Initiate a Last Thrust – October-12-2016

View Article Here   Read More

Ascended Twin Flame André, Recall of communication – September-06-2016

View Article Here   Read More

Federation of Light ~ Blossom Goodchild ~ August 20 2015 Galactic

View Article Here   Read More

Farewell from Ascension Earth!

I would like to extend a heartfelt thank you to each and every one of you for visiting Ascension Earth over the past few years and making this site, what I consider, such a wonderful and very surprising success since my first post way back in January o...

View Article Here   Read More

Göbekli Tepe: The Burying Of An Ancient Megalithic Site

Dr. Rita Louise, GuestWhy Did Our Ancestors Inter This Ancient Massive Architectural Wonder?Located at the highest point of the Germus range in the southeastern Anatolia region of Turkey is the mysterious site of Göbekli Tepe. Excavations at Göbekli Tepe commenced in 1995 after German archaeologist Klaus Schmidt realized what was thought to be a Byzantine cemetery was actually a prehistoric site. Schmidt quickly unearthed a number of T-shaped pillars, which set th [...]

View Article Here   Read More

Sea Salt Discovered on Jupiter’s Moon Europa

This image shows a view of the trailing hemisphere of Jupiter's ice-covered satellite, Europa, in approximate natural color. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.   Image via Galileo spacecraft in 1996.

Europa is thought to have a subsurface ocean. Salt from this hidden sea might be emerging in long fractures visible in the moon’s crust.



Excerpt earthsky.org


Laboratory experiments have lead to new information about the chemical composition of the mysterious dark material in the long, dark fractures on the surface of Europa, a large moon of Jupiter. Researchers at NASA’s Jet Propulsion Laboratory (JPL) mimicked conditions on Europa’s surface. They now say that the dark material is discolored salt, likely sea salt from below the moon’s icy crust. The journal Geological Research Letters published their study on May 15, 2015.

The scientists say this new insight is important in considering whether this icy moon might be hospitable for extraterrestrial life. The life question is a key one for Europa, since this world is believed to have a liquid ocean beneath its crust. The presence of sea salt on Europa’s surface suggests the ocean is interacting with its rocky seafloor.

Scientists have been intensely curious about Europa since Galileo discovered it in 1610. In recent years, they’ve puzzled over the dark material coating the long, linear fractures on Europa’s observable surface. The material was associated with young terrain on this moon of Jupiter, suggesting that it had erupted from within Europa.
However, the chemical composition of the dark material remained elusive, until now.
Planetary scientist Kevin Hand at JPL led the new study. He said in a statement:
If it’s just salt from the ocean below, that would be a simple and elegant solution for what the dark, mysterious material is.
Europa is immersed radiation from Jupiter’s powerful magnetic field, causing high-powered electrons to slam into the moon’s surface. Hand and his team created a laboratory test that mimicked the conditions of Europa’s temperature, pressure, and radiation exposure. They tested a variety of samples including common salt – sodium chloride – and salt water in a vacuum chamber at Europa’s chilly surface temperature of minus 280 degrees Fahrenheit (minus 173 Celsius). They also bombarded the samples with an electron beam to imitate Jupiter’s influence. 

After several hours – a time period corresponding to over a century on Europa, the researchers said – the salt samples were observed to go from white to a yellowish brown, the color similar to the features on the icy moon. Hand said:
This work tells us the chemical signature of radiation-baked sodium chloride is a compelling match to spacecraft data for Europa’s mystery material.
A
A “Europa-in-a-can” laboratory setup at NASA-JPL mimics conditions of temperature, near vacuum and heavy radiation on the surface of Jupiter’s icy moon. Image via NASA/JPL-Caltech


A close-up of salt grains discolored by radiation following exposure in a
Close-up of salt grains discolored by radiation following exposure in a “Europa-in-a-can” test setup at JPL. Image via NASA/JPL-Caltech


Until now, telescopic observations have only shown glimpses of irradiated salts. No telescope on Earth can observe Europa’s surface with enough resolution to identify them with certainty. Researchers suggest additional spacecraft observation to gather more evidence.
A visit to this icy world would help answer the most tantalizing questions about Europa. Long believed to have a liquid ocean of salt water below its icy surface, this moon continues to display promising conditions for extraterrestrial life. 

As Europa orbits Jupiter, it experiences strong tidal forces similar to Earth and the Moon. These forces from Jupiter and the other Jovian moons cause Europa to flex and stretch, which creates heat, and results in Europa having a warm internal temperature than it would with just the heat from the Sun alone. 

Recent observable geological activity also creates strong evidence that the subsurface ocean interacts directly with Europa’s rocky interior, making geothermal vents, like those in Earth’s oceans, a strong possibility as well. 

These hydrothermal vent ecosystems on Earth thrive with no energy from the sun. Bacteria, shrimp and crustaceans have all been observed in these extreme environments, surviving on what researchers have deemed chemosythesis.

With Europa’s enormous amount of liquid salt water, essential chemical elements and geological activity, this long discovered icy moon appears to be one of the solar systems most promising locations for habitable requirements for life. 

However, until a devoted spacecraft visit’s, nothing beyond hopeful speculation can be proven, the researchers say.

Bottom line: Researchers at NASA’s Jet Propulsion Laboratory created laboratory conditions that mimicked those on Jupiter’s large moon Europa, to learn the chemical compositions of the material in long, dark fractures in the moon’s surface. They now believe this material is sea salt, which has emerged to Europa’s surface from its liquid ocean below.

View Article Here   Read More

EGYPT’S MOST MYSTERIOUS TOMB

Dr Otto Schaden and tomb KV-63. The first tomb to be discovered in the Valley of the Kings since King Tut's .Click to zoom

View Article Here   Read More

Mercury’s Mysterious Magnetic Past Goes Back 4 Billion Years

 Excerpt from sci-tech-today.com Examining rocks on Mercury's surface, scientists using data from NASA's Messenger spacecraft have revealed that the planet probably had a much stronger magnetic field nearly 4 billion years ago.  The fi...

View Article Here   Read More

NASA student balloon captures mysterious sounds 23 miles above the Earth

NASA-launched student balloonExcerpt from chron.comFor the first time in 50 years, microphones attached to a NASA-launched student balloon have captured strange hisses, crackling sounds and faint whistling.Researchers aren't sure what the sounds are ...

View Article Here   Read More

Mysterious Glow Detected At Center Of Milky Way Galaxy

In this image, the magenta color indicates the mysterious glow detected by NASA's NuSTAR space telescope.Excerpt from huffingtonpost.com A mysterious glow has been observed at the center of the Milky Way, and scientists are struggling to figure o...

View Article Here   Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here   Read More

This revolutionary discovery could help scientists see black holes for the first time


supermassive black hole
Artist's concept of the black hole.



Excerpt from finance.yahoo.com
Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.
But that could soon change.
Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.
Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.
And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves



.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.
Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.
"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."
Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening

In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.
You'll want to turn up the volume.
What you're seeing and hearing are two different things.
The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.
"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.
Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 

Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.


.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.
What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.
Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑