Tag: new (page 77 of 177)

How can there be ice on Scorching Mercury? NASA Report

NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washingtonnasa.govMESSENGER Finds New Evidence for Water Ice at Mercury's Poles Mercury's North Polar Region Acquired By The Arecibo Observatory A Mosaic of MESSEN...

View Full Article   Read More

Exoplanet is first ‘ice giant’ found outside our solar system

Exoplanet is first ‘ice giant’ found outside our solar system

The planet orbits one member of a binary star system 25,000 light-years from Earth.


According to an Ohio State University (OSU) statement, a team led by OSU researcher Radek Poleski has discovered the first exoplanet that resembles the planet Uranus in our own solar system. The exoplanet falls into the category of ‘ice giants’, and adds another type of world to the exoplanet roster, which already includes rocky planets similar to Earth and gas giants akin to Jupiter.
The exoplanet is located in a binary star system approximately 25,000 light-years away in the direction of the constellation Sagittarius. One of the member stars is about two-thirds the mass of the Sun, while the other is about one-sixth as massive. The exoplanet itself is four times the mass of Uranus and orbits the larger of the two stars at nearly the same distance as Uranus revolves around the Sun.
The exoplanet and its home star system were found with the 1.3-meter Warsaw Telescope at Las Campanas Observatory in Chile, in the course of the Optical Gravitational Lensing Experiment (OGLE). The star system was discovered in light magnified by an intervening gravitational microlens, and object between Earth and the star system; the light from the more distant object, the binary system in this case, is magnified by the gravity of the microlensing object.
It was actually two separate microlensing events, one in 2008 and the other in 2010, that revealed the existence of the binary system and its ice giant planet. OGLE’s database currently includes 13,000 microlensing events; Poleski is designing software to scrutinize the database for indications of additional exoplanets in other solar systems.
“Only microlensing can detect these cold ice giants that, like Uranus and Neptune, are far away from their host stars. This discovery demonstrates that microlensing is capable of discovering planets in very wide orbits,” Poleski explained.
“We were lucky to see the signal from the planet, its host star, and the companion star. If the orientation had been different, we would have seen only the planet, and we probably would have called it a free-floating planet.”
The new research has been published online in The Astrophysical Journal.

View Full Article   Read More

Think You Could Live on Mars? Think Again

Excerpt from

A new analysis of Mars One's plans to colonize the Red Planet finds that the explorers would begin dying within 68 days of touching down

Hear that? That’s the sound of 200,000 reservations being reconsidered. Two hundred thousand is the announced number of intrepid folks who signed up last year for the chance to be among the first Earthlings to colonize Mars, with flights beginning as early as 2024. The catch: the trips will be one way, as in no return ticket, as in farewell friends, family, charbroiled steaks and vodka martinis, to say nothing of such everyday luxuries as modern hospitals and, you know, breathable air.
But the settlers in Jamestown weren’t exactly volunteering for a weekend in Aspen either, and in both cases, the compensations—being the first people on a distant shore—seemed attractive enough. Now, however, the Mars plan seems to have run into a teensy snag. According to a new analysis by a team of grad students at MIT, the new arrivals would begin dying within just 68 days of touching down.

An artist concept of NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Launched in November 2013, the mission will explore the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.
The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)
NASA's MAVEN spacecraft, inside a payload fairing, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Cape Canaveral Air Force Station's Space Launch Complex 41 on Nov. 8, 2013.
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians perform a spin test of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The operation is designed to verify that MAVEN is properly balanced as it spins during the initial mission activities.
Lockheed Martin/NASA

The organizers of the burn-your-boats expedition is a group called Mars One, headed by Bas Lansdorp, a Dutch entrepreneur and mechanical engineer. As Lansdorp sees things, habitat modules and other hardware would be sent to the Red Planet in advance of any astronauts, who would arrive in four-person crews at two-year intervals—when Mars and Earth make their closest approach, which holds the outbound journey to a brief (relatively speaking) eight months. The crew-selection process would be part of (yes) a sponsored reality show, which would ensure a steady flow of cash—and since the settlers would grow their own food onsite, there would be little to carry along with them. All that would keep the overall cost of the project to a shoestring (relative again) $6 billion.

So what could go wrong? That’s what the four MIT students set out to find out, and the short answer is: a lot.

The biggest problem, the students discovered, concerns that business of breathable air. One of the things that’s always made Earth such a niftily habitable place to live is that what animals exhale, plants inhale, and vice versa. Since the Martian astronauts and their crops would be living and respiring in the same enclosed habitats, a perfect closed loop should result in which we provide them all the carbon dioxide they need and they return the favor with oxygen.

Only it doesn’t, the MIT students found. The problem begins with the lettuce and the wheat, both of which are considered essential crops. As lettuce matures, peaking about 30 days after planting, it pushes the 02 level past what’s known as .3 molar fractions, which, whatever it means, doesn’t sound terribly dangerous — except it’s also the point at which the threat of fire rises to unacceptable levels. That risk begins to tail off as the crop is harvested and eaten, but it explodes upward again, far past the .3 level, at 68 days when the far gassier wheat matures.

A simple answer would be simply to vent a little of the excess O2 out, which actually could work, except the venting apparatus is not able to distinguish one gas from another. That means that nitrogen—which would, as on Earth, make up the majority of the astronauts’ atmosphere—would be lost too. That, in turn, would lower the internal pressure to unsurvivable levels—and that’s what gets your 68-day doomsday clock ticking.

There is some question too about whether the hardware that Mars One is counting on would even be ready for prime time. The mission planners make much of the fact that a lot of what they’re planning to use on Mars has already been proven aboard the International Space Station (ISS), which is true enough. But that hardware is built to operate in microgravity—effectively zero g—while Mars’s gravity is nearly 40% of Earth’s. So a mechanical component that would weigh 10 lbs. on Earth can be designed with little concern about certain kinds of wear since it would weigh 0 lbs. in orbit. But on Mars it would be 4 lbs., and that can make all the difference.

“The introduction of a partial gravity environment,” the grad students write, “will inevitably lead to different [environmental] technologies.”

For that and other reasons, technical breakdowns are a certainty. The need for replacement parts is factored into Mars One’s plans, but probably not in the way that they should be. According to the MIT team, over the course of 130 months, spare parts alone would gobble up 62% of the payload space on resupply missions, making it harder to get such essentials as seeds, clothes and medicine—to say nothing of other crew members—launched on schedule.

Then too, there is the question of habitat crowding. It’s easy to keep people alive if you feed them, say, a single calorie-dense food product every day. But energy bars forever means quickly losing your marbles, which is why Mars One plans for a variety of crops—just not a big enough variety. “Given that the crop selection will significantly influence the wellbeing of the crew for the entirety of their lives after reaching Mars,” the authors write, “we opt for crop variety over minimizing growth area.”

Then there is the question of cost—there’s not a space program in history whose initial price tag wasn’t badly lowballed—to say nothing of maintaining that biennial launch schedule, to say nothing of the cabin fever that could soon enough set the settlers at one another’s throats. Jamestown may not have been a picnic, but when things got to be too much you could always go for a walk by the creek.

No creeks here, nor much of anything else either. Human beings may indeed colonize Mars one day, and it’s a very worthy goal. But as with any other kind of travel, the best part of going is often coming home.

View Full Article   Read More

Galactic Federation of Light Sheldan Nidle October 15 2014

View Full Article   Read More

Ancient cult complex discovered in Israel: Ritual sacrifices for storm god?

Researchers discovered an ancient cult complex in Israel. The site may have been used to make religious sacrifices to Baal, the Canaanites' storm god. Pictured is one of the very large pithoid jars found on the site.Excerpt from Tech TimesBy Rebecca...

View Full Article   Read More

Is Mars One Ready to Colonize the Red Planet?

 Excerpt from  latimes.com A team of engineers at MIT that studies the technology needed for humans to live on other planets has determined that the Mars One plan to send four people to colonize the Red Planet by 2025 is not possible.&...

View Full Article   Read More

Universal Family of Light Goddess Isis October 09 2014

View Full Article   Read More

Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
unless otherwise marked.

Terms of Use | Privacy Policy

Up ↑