Tag: optics

5 Signs the California Drought Could Get Worse

Anastasia Pantsios, EcoWatchCalifornia is entering its fourth year of drought, with high temperatures, water shortages and increased wildfires. The state has taken some steps to address the impacts of that, including addressing greenhouse gas emissions and rationing its diminishing water supply. But there are signs that the impacts of drought on the state could get even worse.1. A new study shows that if greenhouse gas emissions continue to ris [...]

View Article Here   Read More

Exoplanet Imager Begins Hunt for Alien Worlds


This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus.


Excerpt from news.discovery.com

By Ian O'Neill

A new instrument attached to one of the most powerful telescopes in the world has been switched on and acquired its ‘first light’ images of alien star systems and Saturn’s moon Titan.
The Spectro-Polarimetric High-contrast Exoplanet REsearch (or SPHIRES) instrument has been recently installed at the ESO’s Very Large Telescope’s already impressive suite of sophisticated instrumentation. The VLT is located in the ultra-dry high-altitude climes of the Atacama Desert in Chile.

In the observation above, an ‘Eye of Sauron‘-like dust ring surrounding the star HR 4796A in the southern constellation of Centaurus, a testament to the sheer power of the multiple technique SPHIRES will use to acquire precision views of directly-imaged exoplanets.

The biggest problem with trying to directly image a world orbiting close to its parent star is that of glare; stars are many magnitudes brighter that the reflected light from its orbiting exoplanet, so how the heck are you supposed to gain enough contrast between the bright star and exoplanet to resolve the two? The SPHIRES instrument is using a combination of three sophisticated techniques to remove a star’s glare and zero-in on its exoplanetary targets.

This infrared image of Saturn’s largest moon, Titan, was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014.
ESO 
The first technique, known as adaptive optics, is employed by the VLT itself. By firing a laser into the Earth’s atmosphere during the observation, a gauge on the turbulence in the upper atmospheric gases can be measured and the effects of which can be removed from the imagery. Any blurriness caused by our thick atmosphere can be adjusted for.

Next up is a precision coronograph inside the instrument that blocks the light from the target star. By doing this, any glare can be removed and any exoplanet in orbit may be bright enough to spot.

But the third technique, which really teases out any exoplanet signal, is the detection of different polarizations of light from the star system. The polarization of infrared light being generated by the star and the infrared glow from the exoplanet are very subtle. SPHIRES can differentiate between the two, thereby further boosting the observation’s contrast.

“SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!” said Jean-Luc Beuzit, of the Institut de Planétologie et d’Astrophysique de Grenoble, France and Principal Investigator of SPHERE, in an ESO press release.

The speed and sheer power of SPHIRES will be an obvious boon to astronomers zooming in on distant exoplanets, aiding our understanding of these strange new worlds.


The star HR 7581 (Iota Sgr) was observed in SPHERE survey mode (parallel observation in the near infrared with the dual imaging camera and the integral field spectrograph ). A very low mass star, more than 4000 times fainter that its parent star, was discovered orbiting Iota Sgr at a tiny separation of 0.24". This is a vital demonstration of the power of SPHERE to image faint objects very close to bright ones.
ESO

View Article Here   Read More

Astronomers Find Massive Exoplanet With Four Parent Stars

Artist rendering of the system 30 Ari with its exoplanet and four stars. Excerpt from techtimes.com By Dianne Depra  Researchers seeking to study the complexities of exoplanets with multiple stars have found a new system with four. Cal...

View Article Here   Read More

This Awesome 3D View Of Deep Space May Be The Best Ever

The background image in this composite shows the Hubble Space Telescope image of the region known as the Hubble Deep Field South. The boxes show distant galaxies that were invisible to Hubble.Excerpt from  huffingtonpost.comAlong with Earthrise ...

View Article Here   Read More

What It’s Like to Be at the 24th International UFO Congress







Excerpt from nbcnews.com
By Katie Linendoll
FOUNTAIN HILLS, Ariz. — If words like UFO, extraterrestrial, crops circles and abductee have ever piqued your paranormal interest, do yourself a favor and head to the International UFO Congress. 

The annual conference—which holds the Guinness record for being the largest convention dedicated to unidentified flying objects—takes place in the picturesque desert town of Fountain Hills, and this year it ran from Feb. 18 to 22. It's worth noting that Arizona is known as a hotbed of activity when it comes to sightings. Thousands flock to the annual event, which is produced by Open Minds, a paranormal research organization. 

Each attendee has his or her own reason for being there. My goal was to find out if modern science and technology have changed the game when it comes to UFO sightings and evidence gathering. 

"A lot of people think, go to a UFO convention, it's going to be tinfoil hats, but that's not what this is. We have NASA astrobiologists speak, scientists, high-ranking military officials, the works. I mean, there's a lot of really credible people covering this subject," said UFO Congress co-organizer and paranormal journalist Maureen Elsberry.

Air Force UFO documents now available online

When attending a UFO conference, the best approach is to come in with an open mind, ask lots of questions and talk with people about why they are there. Everyone has a story, from the speakers to the attendees, and even the vendors (some of whom double as ufologists). 

The highlight of this year's conference was undeniably the speaker series, and it was standing room only to see one man, Bob Lazar. Lazar first spoke out in 1989, claiming that he'd worked as a government scientist at a secret mountainside facility south of Area 51's main site, where he saw remarkably advanced UFO technology. Critics have sought to discredit Lazar, questioning his employment record and educational credentials. 

During the conference, George Knapp, an investigative TV reporter in Las Vegas who broke the Lazar story in '89, led an onstage question-and-answer session with Lazar, who discussed the work he did at a place called S4. Lazar spoke in detail about the alien UFO hangars and UFO propulsion systems he was allegedly asked to reverse engineer, and even loosely sketched them out for the audience. 

"All the science fiction had become reality," said Lazar, who was noticeably uncomfortable and clearly surprised by the fact that, decades later, he remains such a draw. 

You never know whom you'll bump into at the Congress. In the vendor hall, I met sculptor Alan Groves, who traveled all the way from Australia to peddle his "true to scale" Zetan alien figurines. I wondered if his side gig was lucrative, only to realize he was selling the figures like hotcakes. Then we talked about his day job, and he told me he's worked on special and creature effects for films such as "Star Wars," "Alien," "Labyrinth" and "Jurassic Park." 

Many of the attendees told me that hard evidence is a requirement for ufologists and paranormal field experts. Derrel Sims, also known as Alien Hunter, told me he spent two years in the CIA, and also has served as a police officer and licensed private investigator. 

He said his first alien encounter happened at age 4, and others in his family have also seen aliens. In 38-plus years of alien research, Sims has learned this: "If you look, the evidence is there." To date, he said, more than 4,000 pieces of that evidence exist. 

Sims is adamant about only working with evidence-based methods, using DNA tests and collecting samples as well as relying on ultraviolet, infrared and x-ray tools in his research. He said that, in 1992, he discovered aliens leave their own kind of fluorescent fingerprint, and he continues to test for these clues. He added that if you have had an alien encounter, it's important to react quickly to gather evidence: "fluorescence" stays on the skin for only 24 hours. He said that other marks aliens leave include "scoop" marks, which are an identifying thread some abductees have in common. 

Another commonality he's discovered is heritage. He said that, in his research, he has found 45 percent of all abductions happen to Native Americans, Irish and Celtic people, and he said that women also have a higher chance of being abducted. 

When it comes to filming hard-to-explain phenomena, Patty Greer, who makes documentaries about crop circles, said that quadcopters — a.k.a. drones — have added production value to her films. Lynne Kitei, who covered a mass UFO sighting in her book and in the documentary The Phoenix Lights, said that even low-tech tools, like the 35mm film she used, are still a reliable way to gather proof of inexplicable flying craft, especially because they offer something an iPhone doesn't: negatives.

White House responds to UFO request

Night vision also offers added opportunities for UFO researchers, according to Ben Hansen, who was the host and lead investigator of SyFy channel's "Fact or Faked: Paranormal Files." He's now the owner of Night Vision Ops, an online store that sells night-vision technology. Hansen said that the consumer accessibility of new military-grade technologies in thermal and light amplification scopes are upping the game for the everyday UFO enthusiast. 

To close out an intense few days on site at the Congress, Hansen's team invited me to a night watch near Arizona's Superstition Mountains. It was fascinating to see the latest optics add incredible clarity to the night sky, amplifying available light up to 50,000 times beyond what the unaided eye can see. Using the right technology, we were also able to see that a certain flying object, which made everyone nearby jump, wasn't a UFO after all. It was a bat. 

I was surrounded by some serious tech all weekend, and it was eye-opening to see the ways that UFO hunters are gathering scientific evidence to learn more about the paranormal world. But I have to say, the gadget that was the most useful to me at the conference was my iPhone, which I used to download a free nightlight app for kids. For the few hours I managed to sleep, it was with the soothing illumination provided by "Kiwi the Green Koala." In short, I was officially freaked out.

View Article Here   Read More

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here   Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here   Read More

Extreme Storms on Uranus Puzzle Astronomers


Infrared Uranus
These infrared images of the planet Uranus show a white spot that is actually a massive storm on the planet. This image was recorded by the Keck II telescope atop Mauna Kea in Hawaii on Aug. 6, 2014 in the 2.2-micron wavelength.


Excerpt from  space.com
By Elizabeth Howell

Uranus is finally having some summer storms, seven years after the planet reached its closest approach to the sun, leaving scientists wondering why the massive storms are so late.

The usually quiet gas giant now has such "incredibly active" weather that some of the features are even visible to amateurs, said Imke de Pater, the project's lead researcher and an astronomer at the University of California, Berkeley. Astronomers first announced the extreme storms on Uranus in August, and have been trying to understand them ever since.

This is by far the most active weather de Pater's team has seen on Uranus in the past decade, examining its storms and northern convective features. It also paints a different picture of the quiet planet Voyager 2 saw when the NASA spacecraft flew by in 1986.


uranus
An infrared composite image of the two hemispheres of Uranus obtained with Keck Telescope adaptive optics. The component colors of blue, green, and red were obtained from images made at near infrared wavelengths of 1.26, 1.62, and 2.1 microns respectively. The images were obtained on July 11 and 12, 2004. The North pole is at 4 o'clock. Lawrence Sromovsky, University of Wisconsin-Madison/W.W. Keck Observatory

"This type of activity would have been expected in 2007, when Uranus' once-every-42-year equinox occurred and the sun shined directly on the equator," research co-investigator Heidi Hammel, of the Association of Universities for Research in Astronomy, said in a statement. "But we predicted that such activity would have died down by now. Why we see these incredible storms now is beyond anybody's guess."

But here's where the mystery comes in: As far as anyone can tell, Uranus has no source of internal heat. Sunlight is thought to be responsible for changes in its atmosphere, such as storms. But the sun's light is currently weak in Uranus' northern hemisphere, so scientists are puzzled as to why that area is so active today.

 


Huge storms on Uranus


Based on the colors and structure of the storm spotted by amateurs, professional astronomers believe it could hint at a vortex deeper in the atmosphere — similar to phenomena spotted on Jupiter, such as the Great Red Spot.

Follow-up observations with the Keck II telescope revealed that the storm was still raging, although it had changed its shape, and possibly its intensity.

Also contributing to the effort was the Hubble Space Telescope, which examined the entire planet of Uranus Oct. 14 in several wavelengths. The observations revealed storms spanning several altitudes, over a distance of about 5,592 miles (9,000 kilometers).

"If, indeed, these features are high-altitude clouds generated by flow perturbations associated with a deeper vortex system, such drastic fluctuations in intensity would indeed be possible," said Larry Sromovsky, a planetary scientist at the University of Wisconsin-Madison who performed the newer work.

View Article Here   Read More

‘G2’ Gas Ball Survives Black Hole, and Researchers Say They Now Know Why

Excerpt from sciencetimes.com  For years, astronomers have pondered the origins and the contents of the mysterious G2 object floating in the center of the Milky Way galaxy. Drifting towards the galaxy's supermassive black hole, the passing ...

View Article Here   Read More

Spaceships to reach supersonic speeds with lasers?

Excerpt from techtimes.com One of the things that makes space travel unfeasible is the huge cost (and added weight) that comes with powering rockets with solid or liquid fuel. The faster a rocket will eventually go, the more fuel it needs, wh...

View Article Here   Read More

From Newton to Einstein ~ The Mystery of Light ~ Do it Yourself Double Slit Experiment

Thomas Young's Double Slit Experiment is a science staple for early physics lessons about waves. But did you know that you can recreate it at home with simple, everyday objects? In this Tech Lab, I show you how to use a laser pointer and create yo...

View Article Here   Read More

An excellent video presentation clarifying what is happening during the quantum eraser experiment

The image above is what the reality-altering quantum eraser experiment might look like in a lab, with a laser projecting device, optical lenses, and light particle measuring equipment. The video presentation below will simplify and clarify just what i...

View Article Here   Read More

New invisibility cloak device can hide almost anything



invisible

digitaltrends.com

Hats off to scientists at the University of Rochester in New York, who have managed to produce a cheap ‘invisibility cloak’ effect using readily available materials and a lot of clever thinking. Through a combination of optical lenses, any object that passes behind a certain line of sight can be made to disappear from view.

‘The Rochester Cloak’, as it’s being dubbed, uses a simplified four-lens system that essentially bends light around any objects you put into the middle of the chain — you’re able to see the area in the background as normal, but not the item in the foreground. According to its inventors, it can be scaled up using any size of lens, and the team responsible for the setup has used standard, off-the-shelf hardware.

“People have been fascinated with cloaking for a very long time,” said John Howell, a Professor of Physics at the University. “It’s recently been a really popular thing in science fiction and Harry Potter… I think people are really excited about the prospect of just being invisible.”

“From what we know this is the first cloaking device that provides three-dimensional, continuously multidirectional cloaking,” said doctoral student Joseph Choi, one of the team who worked on the project, when speaking to Reuters. “I imagine this could be used to cloak a trailer on the back of a semi-truck so the driver can see directly behind him. It can be used for surgery, in the military, in interior design, art.”

What makes this system so interesting is that it’s simple, inexpensive and capable of working at multiple angles, as long as the object remains inside the series of lenses. Howell and Choi say it cost them $1,000 to get all of the necessary equipment together, but it can be done more cheaply. A patent is pending for their invention but the pair have put together instructions on making your own Rochester Cloak at home for less than $100.


Click to zoom

View Article Here   Read More

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑