Tag: space exploration (page 1 of 2)

Spacecraft Falls From Orbit Over the Pacific, Russia Says






Excerpt from nytimes.com

CAPE CANAVERAL, Fla. — An unmanned Russian spaceship loitering in orbit after a failed cargo run to the International Space Station plunged into Earth's atmosphere late on Thursday, the Russian space agency reported.

The capsule, loaded with more than three tons of food, fuel and supplies for the station crew, fell from orbit at 10:04 p.m. Eastern time, the Russian space agency, Roscosmos, said in a statement.
At the time, the Progress-59 spacecraft was flying over the central Pacific Ocean, the statement said.

Most of the spacecraft was expected to burn up during its high-speed descent through the atmosphere, but small pieces of the structure could have survived and splashed down in the ocean.
“Only a few small pieces of structural elements could reach the planet's surface,” Roscosmos said in a statement earlier Thursday — similar to what happens at the end of routine Progress cargo missions.

The freighter was launched on April 28 from the Baikonur Cosmodrome in Kazakhstan, but never made to the station, a $100 billion research laboratory that flies about 250 miles above the earth.

Ground controllers lost contact with the Progress spaceship shortly after it separated from the upper stage of its Soyuz rocket about nine minutes after launch.

An investigation into the failed mission is underway, Roscosmos said. Russia has flown 62 Progress spacecraft to the station to deliver modules and cargo, two of which were not successful.
Various versions of the Progress freighters have been flying since 1978, supporting previous Soviet-era stations including Salyut 6, Salyut 7 and Mir. The capsules are designed to burn up in the atmosphere after delivering their cargo.

The United States hired privately owned Space Exploration Technologies, or SpaceX, and Orbital ATK to fly cargo to the station after the space shuttles were retired in 2011. SpaceX's missions have all been successful.

Orbital lost a cargo ship in October after a failed launch. Europe flew five ATV freighters to the station, all successfully, but has no plans to fly more. Japan is preparing for its fifth HTV cargo flight in August.

View Article Here   Read More

Desperately Seeking Extraterrestrials ~ Fermi’s Paradox Turns 65 ~ Part 1

Excerpt from huffingtonpost.comIntroduction 65 years ago, in 1950, while having lunch with colleagues Edward Teller and Herbert York, Nobel physicist Enrico Fermi suddenly blurted out, "Where is everybody?" His question is now known as Fermi's p...

View Article Here   Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here   Read More

Billionaire teams up with NASA to mine the moon




Excerpt from cnbc.com
By Susan Caminiti



Moon Express, a Mountain View, California-based company that's aiming to send the first commercial robotic spacecraft to the moon next year, just took another step closer toward that lofty goal. 

Earlier this year, it became the first company to successfully test a prototype of a lunar lander at the Kennedy Space Center in Florida. The success of this test—and a series of others that will take place later this year—paves the way for Moon Express to send its lander to the moon in 2016, said company co-founder and chairman Naveen Jain.

Moon Express conducted its tests with the support of NASA engineers, who are sharing with the company their deep well of lunar know-how. The NASA lunar initiative—known as Catalyst—is designed to spur new commercial U.S. capabilities to reach the moon and tap into its considerable resources.In addition to Moon Express, NASA is also working with Astrobotic Technologies of Pittsburgh, Pennsylvania, and Masten Space Systems of Mojave, California, to develop commercial robotic spacecrafts. 

Jain said Moon Express also recently signed an agreement to take over Space Launch Complex 36 at Cape Canaveral. The historic launchpad will be used for Moon Express's lander development and flight-test operations. Before it was decommissioned, the launchpad was home to NASA's Atlas-Centaur rocket program and its Surveyor moon landers.

"Clearly, NASA has an amazing amount of expertise when it comes to getting to the moon, and it wants to pass that knowledge on to a company like ours that has the best chance of being successful," said Jain, a serial entrepreneur who also founded Internet companies Infospace and Intelius. He believes that the moon holds precious metals and rare minerals that can be brought back to help address Earth's energy, health and resource challenges. 

Among the moon's vast riches: gold, cobalt, iron, palladium, platinum, tungsten and Helium-3, a gas that can be used in future fusion reactors to provide nuclear power without radioactive waste. "We went to the moon 50 years ago, yet today we have more computing power with our iPhones than the computers that sent men into space," Jain said. "That type of exponential technological growth is allowing things to happen that was never possible before."

An eye on the Google prize

Source: MoonExpress

Helping to drive this newfound interest in privately funded space exploration is the Google Lunar X Prize. It's a competition organized by the X Prize Foundation and sponsored by Google that will award $30 million to the first company that lands a commercial spacecraft on the moon, travels 500 meters across its surface and sends high-definition images and video back to Earth—all before the end of 2016.

Moon Express is already at the front of the pack. In January it was awarded a $1 million milestone prize from Google for being the only company in the competition so far to test a prototype of its lander. "Winning the X prize would be a great thing," said Jain. "But building a great company is the ultimate goal with us." When it comes to space exploration, he added, "it's clear that the baton has been passed from the government to the private sector."

Testing in stages

Jain said Moon Express has been putting its lunar lander through a series of tests at the space center. The successful outing earlier this year involved tethering the vehicle—which is the size of a coffee table—to a crane in order to safely test its control systems. "The reason we tethered it to the crane is because the last thing we wanted was the aircraft to go completely haywire and hurt someone," he said. 

At the end of March, the company will conduct a completely free flight test with no tethering. The lander will take off from the pad, go up and sideways, then land back at the launchpad. "This is to test that the vehicle knows where to go and how to get back to the launchpad safely," Jain explained.


Once all these tests are successfully completed, Jain said the lander—called MX-1—will be ready to travel to the moon. The most likely scenario is that it will be attached to a satellite that will take the lander into a low orbit over the Earth. From there the MX-1 will fire its own rocket, powered by hydrogen peroxide, and launch from that orbit to complete its travel to the moon's surface. 

The lander's first mission is a one-way trip, meaning that it's not designed to travel back to the Earth, said Jain. "The purpose is to show that for the first time, a company has developed the technology to land softly on the moon," he said. "Landing on the moon is not the hard part. Landing softly is the hard part." 

That's because even though the gravity of the moon is one-sixth that of the Earth's, the lander will still be traveling down to the surface of the moon "like a bullet," Jain explained. Without the right calculations to indicate when its rockets have to fire in order to slow it down, the lander would hit the surface of the moon and break into millions of pieces. "Unlike here on Earth, there's no GPS on the moon to tell us this, so we have to do all these calculations first," he said. 

Looking ahead 15 or 20 years, Jain said he envisions a day when the moon is used as a sort of way station enabling easier travel for exploration to other planets. In the meantime, he said the lander's second and third missions could likely involve bringing precious metals, minerals and even moon rocks back to Earth. "Today, people look at diamonds as this rare thing on Earth," Jain said.
He added, "Imagine telling someone you love her by giving her the moon."

View Article Here   Read More

Let’s go back to the moon. No, Mars. No, the moon. The debate continues.




Excerpt from washingtonpost.com
By Christian Davenport 

To the moon again? Or Mars?
The questions have hung over NASA for years, and emerged again at a Senate committee hearing Tuesday.

Under President George W. Bush, the target was the moon. Under Obama, who said “we’ve been there before,” Mars became the mission.

But now as his term nears its end, there is some increasingly vocal criticism of that decision, saying there isn’t the funding or political will to get to Mars.

Focusing on Mars is a “flawed policy direction,” Scott Pace, the director of the Space Policy Institute at George Washington University testified on Tuesday. The shift in goals “blindsided” the international space community, he said. The moon “is the next logical target for all of our potential international partners.”

Russia has endorsed sending astronauts there, he said. China sent an unmanned rover to the moon, and unveiled designs for a new heavy rocket for deep space exploration. It even has plans to build its own space station. “Growing space powers such as the Republic of Korea and India have their own unmanned lunar ambitions,” Pace said, while adding that the private sector has also made huge advancements.

To regain its prominence in space, the United States should “lead a multinational program to explore the moon," Pace said.

If it doesn’t, he could imagine a “post-American space world, with a full range of manned and unmanned space activities, but without American leadership or even, in many cases, an American presence.”

Testifying before the same committee, Buzz Aldrin, the Apollo 11 pilot who was the second man to walk on the moon, said NASA is right to focus on going beyond the moon. "American leadership is more than simply getting one step ahead of our global competitors," he said. "American leadership is inspiring the world by consistently doing what no other nation is capable of doing."

Aldrin said he's working on a plan to get to Mars, and the next president should press ahead with the mission.

“I believe that early in the next administration, the nation must commit to developing a permanent presence on Mars,” he said.
With much fanfare, NASA has trumpeted its “Journey to Mars” campaign. And it has highlighted the unmanned test flight of the Orion capsule last year as evidence of its progress toward reaching the Red Planet. It is also developing a new heavy rocket, known as the Space Launch System, designed to go to Mars and deep space.

But critics have maintained that without the funding to support such an endeavor, the attempt is a little more than a public relations stunt. And while Sen. Ted Cruz (R-Texas) and other members the committee on Tuesday said they were committed to the new rocket, others have been less supportive.

“We made a wrong decision when we went down this road,” Rep. Dana Rohrabacher (R-Calif.) said at a hearing late last year.

View Article Here   Read More

Mayday! Mayday! Mars One a ‘suicide mission’, warn leading space scientists




By Victoria Weldon

IT'S been described as science fiction made real - but now, just as the final selection process gets under way for the folk with the right stuff to make a manned mission to Mars, scientists have dashed the dreams of planet Earth by warning the journey will probably never happen and will end in disaster if it does.
Privately run space exploration programme Mars One wants to send four people to the red planet for the rest of their (probably not very long) lives and film it for reality TV in order to help finance the endeavour.

Thousands have set their sights on becoming the first settlers to land on the planet - and have now been whittled down to a short list of 100, including a Scottish PhD student - but with questionable technology, a lack of funding and an unrealistic timeframe, experts claim it is a "suicide mission".

Mars One believes it can achieve a manned mission in 2024 - sooner than NASA, the European Space Agency, the Russians or Chinese, and on a fraction of their budgets.

If the project does go ahead, the crew would have to make it through nine months of interplanetary travel without being killed by mishap, radiation - or each other.

And even then, a recent study suggested they will only last 68 days on Mars before dying - due to lack of food and water.

However, Anu Ojha OBE, director of the UK National Space Academy Programme, has warned the applicants not to get their hopes up as the mission is unlikely to ever leave the ground.

Ojha said: "Obviously this is something that has captured the public's imagination, and Mars One obviously has a great PR team, but space engineering obeys the laws of physics not PR."
Mars One is the brainchild of Dutch entrepreneur Bas Lansdorp who was inspired by the images of Mars sent back by the Sojourner rover in 1997, when he was a student.

Lansdorp, who will not make the journey himself, has an impressive team working on the project including former NASA employees Dr Norbert Kraft, who specialises in the physiological and psychological effects of space travel and space architect Kristian von Bengtson.

Physicist Arno Wielders, who previously worked for Dutch Space, is also on board, as well as a number of other advisers from around the world with backgrounds in space engineering, science and technology, marketing, design and television production.

The ultimate aim is to see a large, self-sustaining colony on Mars, but Ojha, who is also a director at the National Space Centre in Leicester, said there are three major stumbling blocks for the mission: technology, funding and human psychology.

"In terms of technology, it's pushing the absolute boundaries and there seems to be a lot of technological naivety on the part of the people running it", he said.

"There are some elements that seem reasonable, but overall it's concerning, and the timescales are also questionable."

While Mars One is planning the one way mission for 2024, NASA, with its long established expertise and technology, is looking to be able to send humans to Mars and bring them back again by the mid 2030s.

This is estimated to cost up to as much as £100 billion (£64.9bn) for the space agency, while Mars One believes it can do it for an optimistic $6 billion (£3.9bn) - and there are even questions over whether or not they will be able to achieve that much funding.
The private enterprise is hoping to raise money through a TV deal and additional funding from the exposure that will bring the project.

Last year it said it had teamed up with programme makers Endemol, but the Big Brother creators recently pulled out of the deal claiming they were "unable to reach agreement on the details of the contract".

Mars One did not respond to questioning by the Sunday Herald over its funding, but its website showed that as at January this year, it had raised just $759,816 from donations, merchandising, and a crowdfunding campaign.

It is unclear what other funding the project has.

Ojha said: "The business model has so many holes in it, it's shaky to say the least. And when you ask them how much money they have raised, they say it's still ongoing. The time scales and the business model - they're completely unrealistic."

Mars One plans to send several unmanned rockets to Mars ahead of the 2024 mission, with the first of these scheduled to take place in 2018.

These will include missions with robots to find a suitable location for a base and assemble it ahead of the humans' arrival.
The project claims it will use only existing technology for the mission, buying in materials from proven suppliers including Lockheed Martin or SpaceX.

The equipment involved includes several simulation outposts for training, a rocket launcher, a transit vehicle to take the crew to Mars, a Mars landing capsule, two rovers, a Mars suit and a communications system.

However, experts have warned that much of this equipment has not been fully tested. 

Physicist professor Todd Huffman is a big supporter of attempting a manned mission to Mars, but he also has serious concerns about Mars One, claiming it is "scientifically irresponsible".

He said: "The plan stretches the technology in many places.
"The launch vehicle they want to use has not actually ever launched yet, let alone make a trip to Mars.

"The living spaces have not been made nor has it been tested whether they can be robotically assembled and by what kind of robot.

"A suitable site would also need to be found for the living spaces and the details of how water extraction will take place have not been understood.

"If you assign a 90 per cent chance to success to each of those things, all of which are necessary for human survival, you end up with about a 50 per cent chance of failure, ending in the death of the colonists - and that would likely not make good television."
He added: "Unless we [wait for] quite a lot of technology and exploration to happen first, it is basically worse than a one-way ticket for the colonists - it is almost surely a suicide mission if carried out within this next decade."

Although most scientists believe the mission will not go ahead, some have also warned of the psychological impact on the people selected for the mission if it does.

Ojha said: "The thing that's really captured the public's imagination is this idea of it being a one way trip, but this brings another set of problems in terms of human psychology.

"The longest period a human has spent in space is 438 days - they're talking about sending people on a one way trip.
"Lots of the people I've seen interviewed, they're really excited about taking part, but have they really thought about what they're doing and what the implications are?

"I would tell them to go to Antarctica for six months in the middle of winter and that's about 1 per cent of what they'll be experiencing on Mars.

"Human psychology is far more fragile than we think."

However, while many scientists warn of the dangers and do not believe the mission will proceed, they have praised Mars One for sparking the public's interest in planetary science.

Dr John Bridges, of the Space Research Centre in Leicester, said: "It's a very interesting and innovative project, but the time scales are very challenging.

"I believe they're planning for 2024 and it's 2015 now. So for something as major as this, it's a very challenging timescale
"But it's fantastic that people are thinking about this, that industry is getting involved and raising awareness of planetary science."

Ojha added: "Mars One has been great in a way because it's once again drawn people's imagination to the idea of space engineering and exploration. 

"But the reality is that there are serious concerns about the project's space engineering, funding and medical implications."

Lansdorp has previously said that most people are "surprised to hear that the manned missions will be happening in ten years time, with a budget ten times less than Nasa".

He added: "But I think that if you really spend time studying Mars One, you cannot believe there is not a good chance we will make it.
"At the same time, it's a hugely ambitious plan, there's many things that can go wrong with such a big plan.

"But I believe we have a good plan and we can overcome the challenges."

However, he has also conceded that the current plans are an "optimum schedule", adding: "If one rocket doesn't launch, or a lander doesn't work on Mars before a human goes, any major malfunctions will result in a two year delay."

Mars One declined the Sunday Herald's request to interview someone from the project and failed to answer any of our questions.

View Article Here   Read More

Poll Reveals Public Skepticism of Government and Private Human Spaceflight

SpaceShipTwo powered test flight
A poll found 58 percent of people said private companies like Virgin Galactic should be allowed to send people to space, which it plans to do via its suborbital SpaceShipTwo vehicle (shown during a powered test flight). Credit: Virgin Galactic


Excerpt from spacenews.com

WASHINGTON — The American public is skeptical that private ventures will be able to launch “ordinary people” into space in the coming decades, and is split about spending money on government-led human space exploration, a new poll indicates. 

 The Monmouth University Poll results, released Feb. 16, showed that a majority of Americans believe private companies should be permitted to launch people into space, but also that they did not believe it likely those companies would be able to do so in next 20 to 30 years.  In the poll, 58 percent of people said private companies should be allowed to launch people in space, versus 37 percent who said that human spaceflight should be left to governments alone. 

However, 55 percent thought it was not likely that “ordinary people will be able to travel regularly” into space in the next 20 to 30 years, while 44 percent said such travel would be somewhat or very likely.  Most people also said they were unwilling to fly in space themselves: 69 percent said they would decline a free trip into space, while 28 percent said they would accept it. The poll did not specify what kind of trip — suborbital or orbital — was offered.  The poll revealed a sharp difference in gender, with men more willing than women to believe private ventures should be allowed to fly people in space. Men supported private over government-only human spaceflight by a margin of 71 to 26 percent. 

Women, though were, more evenly split, with 44 percent backing private human spaceflight and 49 percent supporting government-only efforts. MoonFifty percent of those polled said the U.S. government should not spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids.” 

The public is also divided about spending money on government human space exploration. Asked if the U.S. government should spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids,” 50 percent said no, while 42 percent said yes.  As with private spaceflight, there was a strong gender split, with 50 percent of men, but only 36 percent of women, supporting spending on human space exploration. There was, by contrast, little difference by party affiliation.  

The poll showed greater support for government spending on space in general. Asked if increased spending on the space program in general would be “a good investment for the country,” 51 percent agreed and 43 percent disagreed.  The poll is based on a telephone survey of 1,008 people in December, and has an overall margin of error of 3.1 percent.
WASHINGTON — The American public is skeptical that private ventures will be able to launch “ordinary people” into space in the coming decades, and is split about spending money on government-led human space exploration, a new poll indicates.
The Monmouth University Poll results, released Feb. 16, showed that a majority of Americans believe private companies should be permitted to launch people into space, but also that they did not believe it likely those companies would be able to do so in next 20 to 30 years.
In the poll, 58 percent of people said private companies should be allowed to launch people in space, versus 37 percent who said that human spaceflight should be left to governments alone. However, 55 percent thought it was not likely that “ordinary people will be able to travel regularly” into space in the next 20 to 30 years, while 44 percent said such travel would be somewhat or very likely.
Most people also said they were unwilling to fly in space themselves: 69 percent said they would decline a free trip into space, while 28 percent said they would accept it. The poll did not specify what kind of trip — suborbital or orbital — was offered.
The poll revealed a sharp difference in gender, with men more willing than women to believe private ventures should be allowed to fly people in space. Men supported private over government-only human spaceflight by a margin of 71 to 26 percent. Women, though were, more evenly split, with 44 percent backing private human spaceflight and 49 percent supporting government-only efforts.
Moon
Fifty percent of those polled said the U.S. government should not spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids.” Credit: NASA
The public is also divided about spending money on government human space exploration. Asked if the U.S. government should spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids,” 50 percent said no, while 42 percent said yes.
As with private spaceflight, there was a strong gender split, with 50 percent of men, but only 36 percent of women, supporting spending on human space exploration. There was, by contrast, little difference by party affiliation.
The poll showed greater support for government spending on space in general. Asked if increased spending on the space program in general would be “a good investment for the country,” 51 percent agreed and 43 percent disagreed.
The poll is based on a telephone survey of 1,008 people in December, and has an overall margin of error of 3.1 percent.
- See more at: http://spacenews.com/poll-reveals-public-skepticism-of-government-and-private-human-spaceflight/#sthash.6PxcrjTQ.dpuf

View Article Here   Read More

Moonquakes and blazing heat: What would life really be like on the Moon?


Lunar Base Made with 3D Printing


Excerpt from space.com

The idea of building a lunar outpost has long captured people's imaginations. But what would it really be like to live on the moon?
Space exploration has long focused on the moon, with Earth's satellite the setting for a number of significant missions. A 1959 Soviet spacecraft photographed the moon's far side for the first time, and in 1969, NASA landed people on the lunar surface for the first time. Numerous missions followed, including NASA's Lunar Reconnaissance Orbiter that beamed home the highest-resolution topographical lunar map to date, covering 98.2 percent of the moon's surface. 

Altogether, data beamed back from numerous missions suggest that no place on the moon would be a pleasant place to live, at least compared with Earth. Lunar days stretch for about 14 Earth days with average temperatures of 253 degrees Fahrenheit (123 degrees Celsius), while lunar nights also last 14 Earth days (due to the moon's rotation) and maintain a frigid cold of minus 387 degrees Fahrenheit (minus 233 degrees Celsius). 

"About the only place we could build a base that wouldn't have to deal with these extremes is, oddly enough, near the lunar poles," said Rick Elphic, project scientist for NASA's LADEE probe, which studied the moon's atmosphere and dust environment before performing a planned crash into the natural satellitein April 2014. These areas likely store vast amounts of water-ice and enjoy low levels of light from the sun for several months at a time.

"Instead of the blazing heat of lunar noon, it is a kind of perpetual balmy sunset, with temperatures around 0 degrees Celsius [32 degrees Fahrenheit] due to the low angle of the sun," Elphic added.

Vacations away from pole outposts would offer up sights unlike anything on Earth. Decorating the moon's vast lava plains are large impact-borne "mountains," the tallest of which is 3.4 miles (5.5 kilometers) high, about the size of Mount Saint Elias on the border of Alaska and Canada. "Skylight" holes puncture some of the plains where lava likely drained into sub-surface caverns — the perfect adventure for lunar spelunkers.

The moon also sports huge craters, such as the 25-mile-wide (40 km) Aristarchus crater. A view from the rim of Aristarchus would "dwarf the Grand Canyon and make Meteor Crater in Arizona look like a hole in a putting green," Elphic told Space.com via email.


Lunar athletes would not need to check the forecast, however. Because of its very tenuous atmosphere, the moon has no weather. "Every day is sunny with no chance of rain!" Elphic added. You would, however, have to look out for so-called space weather, which includes meteor particles that can be as large as golf balls and highly energetic particles from solar flares.

Another potential danger would be moonquakes. Seismometers left on the lunar surface during Apollo show that the moon is still seismically active, and even has rare, hour-long quakes measuring up to 5.5 on the Richter scale. These quakes would be strong enough to cause structural damage to buildings.

"So don't leave Earth for your home on the moon thinking you've left seismic activity behind," Elphic said. "Make sure your lunar house is up to code."

View Article Here   Read More

Elon Musk drops space plans into Seattle’s lap




Excerpt from seattletimes.com

Elon Musk thought three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

Of all the newcomers we’ve seen here lately, one of the more interesting is Elon Musk.

The famous entrepreneur isn’t going to live here, at least not yet. But earlier this month he did announce plans to bulk up an engineering center near Seattle for his SpaceX venture. The invitation-only event was held in the shadow of the Space Needle.
If the plan happens, SpaceX would join Planetary Resources and Blue Origin in a budding Puget Sound space hub. With talent from Boeing, the aerospace cluster and University of Washington, this offers fascinating potential for the region’s future.

Elon Musk sounds like the name of a character from a novel that would invariably include the sentence, “he had not yet decided whether to use his powers for good or for evil.”

He is said to have been the inspiration for the character Tony Stark, played by Robert Downey Jr. in the “Iron Man” movies. He’s also been compared to Steve Jobs and even Thomas Edison.

The real Musk seems like a nice-enough chap, at least based on his ubiquitous appearances in TED talks and other venues.

Even the semidishy essay in Marie Claire magazine by his first wife, Justine, is mostly about the challenge to the marriage as Musk became very rich, very young, started running with a celebrity crowd and exhibited the monomaniacal behavior common to the entrepreneurial tribe.

A native of South Africa, Musk emigrated to Canada and finally to the United States, where he received degrees from the University of Pennsylvania’s prestigious Wharton School. He left Stanford’s Ph.D. program in applied physics after two days to start a business.
In 1995, he co-founded Zip2, an early Internet venture for newspapers. Four years later, he co-founded what would become PayPal. With money from eBay’s acquisition of PayPal, he started SpaceX. He also invested in Tesla Motors, the electric-car company, eventually becoming chief executive. Then there’s Solar City, a major provider of solar-power systems.

Musk has said that early on he sensed three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

At age 43, Musk is seven years younger than Jeff Bezos and more than 15 years younger than Bill Gates.

His achievements haven’t come without controversy. Tesla played off several states against each other for a battery factory. Nevada, desperate to diversify its low-wage economy, won, if you can call it that.

The price tag was $1.4 billion in incentives and whether it ever pays off for the state is a big question. A Fortune magazine investigation showed Musk not merely as a visionary but also a master manipulator with a shaky deal. Musk, no shrinking violet, fired back on his blog.

SpaceX is a combination of the practical and the hyperambitious, some would say dreamy.

On the practical side, the company is one of those chosen by the U.S. government to resupply the International Space Station. Musk also hopes to put 4,000 satellites in low-Earth orbit to provide inexpensive Internet access worldwide.

The satellite venture will be based here, with no financial incentives from the state.

But he also wants to make space travel less expensive, generate “a lot of money” through SpaceX, and eventually establish a Mars colony.

“SpaceX, or some combination of companies and governments, needs to make progress in the direction of making life multiplanetary, of establishing a base on another planet, on Mars — being the only realistic option — and then building that base up until we’re a true multiplanet species,” he said during a TED presentation.

It’s heady stuff. And attractive enough to lead Google and Fidelity Investments to commit $1 billion to SpaceX.

Also, in contrast with the “rent-seeking” and financial plays of so many of the superwealthy, Musk actually wants to create jobs and solve practical problems.

If there’s a cautionary note, it is that market forces alone can’t address many of our most serious challenges. Indeed, in some cases they make them worse.

Worsening income inequality is the work of the hidden hand, unfettered by antitrust regulation, progressive taxation, unions and protections against race-to-the-bottom globalization.

If the hidden costs of spewing more carbon into the atmosphere are not priced in, we have today’s market failure exacerbating climate change. Electric cars won’t fix that as long as the distortions favoring fossil fuels remain.

So a broken, compromised government that’s cutting research dollars and failing to invest in education and forward-leaning infrastructure is a major impediment.

The United States did not reach the moon because of a clever billionaire, but through a national endeavor to serve the public good. I know, that’s “so 20th century.” 

Also, as Northwestern University economist Robert Gordon might argue, visionaries such as Thomas Edison grabbed relatively low-hanging fruit, with electrification creating huge numbers of jobs. 

Merely recovering the lost demand of the Great Recession has proved difficult. Another electrificationlike revolution that lifts all boats seems improbable.

I’m not sure that’s true. But it will take more than Iron Man to rescue the many Americans still suffering.

View Article Here   Read More

NASA Fuel Shortage: Will Plutonium Scarcity End Deep-Space Exploration By 2020?

 Excerpt from isciencetimes.com By Philip Ross A plutonium pellet, the fuel that keeps NASA space exploration going. (Photo: Creative Commons)  NAS...

View Article Here   Read More

NASA selects four key commercial partners for improved spaceflight



Excerpt from
thespacereporter.com



According to a NASA statement, on December 23, the agency released the names of the four American companies selected for future developmental collaborations. The companies were chosen under the auspices of the Collaborators for Commercial Space Capabilities program, which facilities industry access to NASA’s spaceflight resources. The products of the partnerships will be made available to governmental and non-governmental entities within the next five years.

The four companies that have been chosen are the following: ATK Space Systems of Beltsville, Maryland, which is space transportation capacity; Final Frontier Design of Brooklyn, New York, which is developing space suits for intra-vehicular operations; Space Exploration Technologies of Hawthorne, California, which is developing space transportation means that could be used to facilitate future deep space missions; and United Launch Alliance of Centennial, Colorado, which is developing new, less expensive launch vehicles with greater performance.

“These awards demonstrate the diversity and maturity of the commercial space industry. We look forward to working with these partners to advance space capabilities and make them available to NASA and other customers in the coming years,” said Phil McAlister, director of commercial spaceflight at NASA. Although NASA will contribute expertise, technology, evaluations and the resultant data and insights, it is up to the four companies to cover the costs of their collaboration with NASA.

View Article Here   Read More

NASA partnering with four companies to develop a new commercial space program


NASA-partnering-four-companies

Excerpt from
capitalberg.com 

NASA will collaborate with four U.S. based companies to develop a new commercial space program.

NASA will collude with Space Exploration Technologies (SpaceX), Final Frontier Design, United Launch Alliance and the ATK Space Systems. NASA named this initiative as the Collaborations for Commercial Space Capabilities (CCSC).

Phil McAlister, NASA’s commercial spaceflight development head, said “Companies in all shapes and sizes are investing their own capital toward innovative commercial space capabilities. This collaboration demonstrates the diversity and maturity of the commercial space industry. We look forward to working with these partners to advance space capabilities and make them available to NASA and other customers in the coming years,”

The program includes the development of new vehicles that shall aid space exploration and flourish intra-vehicular activity space suits.

View Article Here   Read More

The End of the Space Race?




Excerpt from
psmag.com

A far cry from the fierce Cold War Space Race between the U.S. and the Soviet Union, exploration in the 21st century is likely to be a much more globally collaborative project.

Today, NASA’s goal to put astronauts on Mars by the 2030s could be a similarly unifying project. And not only in the United States. A far cry from the fierce Cold War Space Race between the U.S. and the Soviet Union, exploration in the 21st century is likely to be a far more globally collaborative project.

Why has the idea of reaching Mars captured the world? A trip to Mars is a priority for many scientific reasons—some believe it’s the planet that most resembles our own, and one that could answer the age-old question of whether we’re alone in the universe—but there’s also been a long popular fascination with the planet, Stofan observed. Ever since Giovanni Virginio Schiaparelli first observed the canali on Mars in the 1800s or when H.G. Wells wrote about aliens from Mars in his 1898 science fiction novel, The War of the Worlds, the planet has loomed large in the public’s imagination.

NASA’s view is to turn over to the private sector those projects that in a sense have become routine so that it can focus its resources on getting to Mars.

This spirit of trans-border ownership and investment seems set to continue. One key part of this is the Global Exploration Roadmap, an effort between space agencies like NASA, France’s Centre National d’Etudes Spatiales, the Canadian Space Agency, and the Japan Aerospace Exploration Agency, among many others, that is intended to aid joint projects from the International Space Station to expeditions to the Moon and near-Earth asteroids—and to reach Mars. On a recent trip to India’s space agency, Stofan recounted to me, she met with many Indian engineers who were just as excited as the Americans to get scientists up there, not only to explore, but also to begin nailing down the question of whether there was ever life on the red planet.

It’s also clear that the next stage of space exploration will not only be more global, but will equally involve greater private and public partnerships.

This environment feels a lot different from the secretive and adversarial Space Race days, when the U.S. and Soviet Union battled to reach the moon first. What’s changed? The Cold War is over, of course, but with it, the funding commitment may also be missing this time around. Stofan mentioned, in response to an audience question, that at the time of the Apollo missions, NASA got up to about four percent of the federal budget, while now it’s only around 0.4 percent. The dollars are still large, but perhaps increased international and private cooperation can be seen as an efficient, clever way to do more with less.

So, what does the future hold? NASA is extremely focused on how to get to Mars and back again safely, Stofan told the audience, but the fun role of science fiction, she suggested, is to start envisioning what the steps after that might be. For example, what might it be like to live on Mars? After all, science often gets its inspiration from the creative world. Just look at how similar mobile phones are to the communicators from Star Trek, she pointed out, or the fact that MIT students made a real-life version of the robotic sphere that Luke Skywalker trains with in Star Wars. “Stories are a great counterpoint to science,” she said.

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑