Tag: spacex (page 1 of 2)

A Short Situation Update

The Chimera group has used the September 1st annular solar eclipse as a trigger to reopen a negative plasma portal through the Congo energy vortex. You can see that the path of totality for the eclipse goes through Congo:  Exactly 67 minutes after...

View Article Here   Read More

MAKE THIS VIRAL! FREE THE COLONIES!

FREE THE COLONIES! MAY 30TH, 2015 It is time to take action again! It is time to take the destiny of our world and the Solar System in our own hands! Therefore we will meet in groups large and small, as individuals and couples, on May 30th this year. ...

View Article Here   Read More

Spacecraft Falls From Orbit Over the Pacific, Russia Says






Excerpt from nytimes.com

CAPE CANAVERAL, Fla. — An unmanned Russian spaceship loitering in orbit after a failed cargo run to the International Space Station plunged into Earth's atmosphere late on Thursday, the Russian space agency reported.

The capsule, loaded with more than three tons of food, fuel and supplies for the station crew, fell from orbit at 10:04 p.m. Eastern time, the Russian space agency, Roscosmos, said in a statement.
At the time, the Progress-59 spacecraft was flying over the central Pacific Ocean, the statement said.

Most of the spacecraft was expected to burn up during its high-speed descent through the atmosphere, but small pieces of the structure could have survived and splashed down in the ocean.
“Only a few small pieces of structural elements could reach the planet's surface,” Roscosmos said in a statement earlier Thursday — similar to what happens at the end of routine Progress cargo missions.

The freighter was launched on April 28 from the Baikonur Cosmodrome in Kazakhstan, but never made to the station, a $100 billion research laboratory that flies about 250 miles above the earth.

Ground controllers lost contact with the Progress spaceship shortly after it separated from the upper stage of its Soyuz rocket about nine minutes after launch.

An investigation into the failed mission is underway, Roscosmos said. Russia has flown 62 Progress spacecraft to the station to deliver modules and cargo, two of which were not successful.
Various versions of the Progress freighters have been flying since 1978, supporting previous Soviet-era stations including Salyut 6, Salyut 7 and Mir. The capsules are designed to burn up in the atmosphere after delivering their cargo.

The United States hired privately owned Space Exploration Technologies, or SpaceX, and Orbital ATK to fly cargo to the station after the space shuttles were retired in 2011. SpaceX's missions have all been successful.

Orbital lost a cargo ship in October after a failed launch. Europe flew five ATV freighters to the station, all successfully, but has no plans to fly more. Japan is preparing for its fifth HTV cargo flight in August.

View Article Here   Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here   Read More

Do we really want to know if we’re not alone in the universe?



Frank Drake, the founder of Search for Extraterrestrial Intelligence (SETI), at his home in Aptos, Calif. (Ramin Rahimian for The Washington Post)


Excerpt from washingtonpost.com

It was near Green Bank, W.Va., in 1960 that a young radio astronomer named Frank Drake conducted the first extensive search for alien civilizations in deep space. He aimed the 85-foot dish of a radio telescope at two nearby, sun-like stars, tuning to a frequency he thought an alien civilization might use for interstellar communication.

But the stars had nothing to say.

So began SETI, the Search for Extraterrestrial Intelligence, a form of astronomical inquiry that has captured the imaginations of people around the planet but has so far failed to detect a single “hello.” Pick your explanation: They’re not there; they’re too far away; they’re insular and aloof; they’re zoned out on computer games; they’re watching us in mild bemusement and wondering when we’ll grow up.

Now some SETI researchers are pushing a more aggressive agenda: Instead of just listening, we would transmit messages, targeting newly discovered planets orbiting distant stars. Through “active SETI,” we’d boldly announce our presence and try to get the conversation started.

Naturally, this is controversial, because of . . . well, the Klingons. The bad aliens.

 NASA discovers first Earth-size planet in habitable zone of another star

"NASA's Kepler Space Telescope has discovered the first validated Earth-size planet orbiting in the habitable zone of a distant star, an area where liquid water might exist on its surface. The planet, Kepler-186f, is ten percent larger in size than Earth and orbits its parent star, Kepler-186, every 130 days. The star, located about 500 light-years from Earth, is classified as an M1 dwarf and is half the size and mass of our sun." (NASA Ames Research Center)
“ETI’s reaction to a message from Earth cannot presently be known,” states a petition signed by 28 scientists, researchers and thought leaders, among them SpaceX founder Elon Musk. “We know nothing of ETI’s intentions and capabilities, and it is impossible to predict whether ETI will be benign or hostile.”

This objection is moot, however, according to the proponents of active SETI. They argue that even if there are unfriendlies out there, they already know about us. That’s because “I Love Lucy” and other TV and radio broadcasts are radiating from Earth at the speed of light. Aliens with advanced instruments could also detect our navigational radar beacons and would see that we’ve illuminated our cities.

“We have already sent signals into space that will alert the aliens to our presence with the transmissions and street lighting of the last 70 years,” Seth Shostak, an astronomer at the SETI Institute in California and a supporter of the more aggressive approach, has written. “These emissions cannot be recalled.”

That’s true only to a point, say the critics of active SETI. They argue that unintentional planetary leakage, such as “I Love Lucy,” is omnidirectional and faint, and much harder to detect than an intentional, narrowly focused signal transmitted at a known planet.

View Article Here   Read More

Mayday! Mayday! Mars One a ‘suicide mission’, warn leading space scientists




By Victoria Weldon

IT'S been described as science fiction made real - but now, just as the final selection process gets under way for the folk with the right stuff to make a manned mission to Mars, scientists have dashed the dreams of planet Earth by warning the journey will probably never happen and will end in disaster if it does.
Privately run space exploration programme Mars One wants to send four people to the red planet for the rest of their (probably not very long) lives and film it for reality TV in order to help finance the endeavour.

Thousands have set their sights on becoming the first settlers to land on the planet - and have now been whittled down to a short list of 100, including a Scottish PhD student - but with questionable technology, a lack of funding and an unrealistic timeframe, experts claim it is a "suicide mission".

Mars One believes it can achieve a manned mission in 2024 - sooner than NASA, the European Space Agency, the Russians or Chinese, and on a fraction of their budgets.

If the project does go ahead, the crew would have to make it through nine months of interplanetary travel without being killed by mishap, radiation - or each other.

And even then, a recent study suggested they will only last 68 days on Mars before dying - due to lack of food and water.

However, Anu Ojha OBE, director of the UK National Space Academy Programme, has warned the applicants not to get their hopes up as the mission is unlikely to ever leave the ground.

Ojha said: "Obviously this is something that has captured the public's imagination, and Mars One obviously has a great PR team, but space engineering obeys the laws of physics not PR."
Mars One is the brainchild of Dutch entrepreneur Bas Lansdorp who was inspired by the images of Mars sent back by the Sojourner rover in 1997, when he was a student.

Lansdorp, who will not make the journey himself, has an impressive team working on the project including former NASA employees Dr Norbert Kraft, who specialises in the physiological and psychological effects of space travel and space architect Kristian von Bengtson.

Physicist Arno Wielders, who previously worked for Dutch Space, is also on board, as well as a number of other advisers from around the world with backgrounds in space engineering, science and technology, marketing, design and television production.

The ultimate aim is to see a large, self-sustaining colony on Mars, but Ojha, who is also a director at the National Space Centre in Leicester, said there are three major stumbling blocks for the mission: technology, funding and human psychology.

"In terms of technology, it's pushing the absolute boundaries and there seems to be a lot of technological naivety on the part of the people running it", he said.

"There are some elements that seem reasonable, but overall it's concerning, and the timescales are also questionable."

While Mars One is planning the one way mission for 2024, NASA, with its long established expertise and technology, is looking to be able to send humans to Mars and bring them back again by the mid 2030s.

This is estimated to cost up to as much as £100 billion (£64.9bn) for the space agency, while Mars One believes it can do it for an optimistic $6 billion (£3.9bn) - and there are even questions over whether or not they will be able to achieve that much funding.
The private enterprise is hoping to raise money through a TV deal and additional funding from the exposure that will bring the project.

Last year it said it had teamed up with programme makers Endemol, but the Big Brother creators recently pulled out of the deal claiming they were "unable to reach agreement on the details of the contract".

Mars One did not respond to questioning by the Sunday Herald over its funding, but its website showed that as at January this year, it had raised just $759,816 from donations, merchandising, and a crowdfunding campaign.

It is unclear what other funding the project has.

Ojha said: "The business model has so many holes in it, it's shaky to say the least. And when you ask them how much money they have raised, they say it's still ongoing. The time scales and the business model - they're completely unrealistic."

Mars One plans to send several unmanned rockets to Mars ahead of the 2024 mission, with the first of these scheduled to take place in 2018.

These will include missions with robots to find a suitable location for a base and assemble it ahead of the humans' arrival.
The project claims it will use only existing technology for the mission, buying in materials from proven suppliers including Lockheed Martin or SpaceX.

The equipment involved includes several simulation outposts for training, a rocket launcher, a transit vehicle to take the crew to Mars, a Mars landing capsule, two rovers, a Mars suit and a communications system.

However, experts have warned that much of this equipment has not been fully tested. 

Physicist professor Todd Huffman is a big supporter of attempting a manned mission to Mars, but he also has serious concerns about Mars One, claiming it is "scientifically irresponsible".

He said: "The plan stretches the technology in many places.
"The launch vehicle they want to use has not actually ever launched yet, let alone make a trip to Mars.

"The living spaces have not been made nor has it been tested whether they can be robotically assembled and by what kind of robot.

"A suitable site would also need to be found for the living spaces and the details of how water extraction will take place have not been understood.

"If you assign a 90 per cent chance to success to each of those things, all of which are necessary for human survival, you end up with about a 50 per cent chance of failure, ending in the death of the colonists - and that would likely not make good television."
He added: "Unless we [wait for] quite a lot of technology and exploration to happen first, it is basically worse than a one-way ticket for the colonists - it is almost surely a suicide mission if carried out within this next decade."

Although most scientists believe the mission will not go ahead, some have also warned of the psychological impact on the people selected for the mission if it does.

Ojha said: "The thing that's really captured the public's imagination is this idea of it being a one way trip, but this brings another set of problems in terms of human psychology.

"The longest period a human has spent in space is 438 days - they're talking about sending people on a one way trip.
"Lots of the people I've seen interviewed, they're really excited about taking part, but have they really thought about what they're doing and what the implications are?

"I would tell them to go to Antarctica for six months in the middle of winter and that's about 1 per cent of what they'll be experiencing on Mars.

"Human psychology is far more fragile than we think."

However, while many scientists warn of the dangers and do not believe the mission will proceed, they have praised Mars One for sparking the public's interest in planetary science.

Dr John Bridges, of the Space Research Centre in Leicester, said: "It's a very interesting and innovative project, but the time scales are very challenging.

"I believe they're planning for 2024 and it's 2015 now. So for something as major as this, it's a very challenging timescale
"But it's fantastic that people are thinking about this, that industry is getting involved and raising awareness of planetary science."

Ojha added: "Mars One has been great in a way because it's once again drawn people's imagination to the idea of space engineering and exploration. 

"But the reality is that there are serious concerns about the project's space engineering, funding and medical implications."

Lansdorp has previously said that most people are "surprised to hear that the manned missions will be happening in ten years time, with a budget ten times less than Nasa".

He added: "But I think that if you really spend time studying Mars One, you cannot believe there is not a good chance we will make it.
"At the same time, it's a hugely ambitious plan, there's many things that can go wrong with such a big plan.

"But I believe we have a good plan and we can overcome the challenges."

However, he has also conceded that the current plans are an "optimum schedule", adding: "If one rocket doesn't launch, or a lander doesn't work on Mars before a human goes, any major malfunctions will result in a two year delay."

Mars One declined the Sunday Herald's request to interview someone from the project and failed to answer any of our questions.

View Article Here   Read More

Mars One mission cuts candidate pool down to 100 aspiring colonists

Excerpt from mashable.comOnly 100 people are still competing for four seats on a one-way trip to Mars advertised by Dutch nonprofit Mars One.In its latest round of cuts, the foundation cut its applicant pool from 660 to 100 finalists on Tuesday. More ...

View Article Here   Read More

SpaceX Rocket’s Stunning View of Our Home Planet


Falcon 9 Carrying DSCOVR to L1
Image of Earth taken by a SpaceX Falcon 9 rocket



Excerpt from news.discovery.com

A SpaceX Falcon 9 rocket made its first foray into deep space this week, depositing a U.S. space weather satellite into an orbit that eventually will reach more than four times farther away than the moon.

The rocket’s upper-stage deposited the Deep Space Climate Observatory, nicknamed DSCOVR, into an initial orbit that stretched more than 770,000 miles from Earth. From there, DSCOVR will spend the next 110 days getting itself into its operational orbit 930,000 miles from Earth and circling the sun.

A camera aboard the upper-stage shared the view. More pictures will be coming from DSCOVR. Though its main mission is to monitor the sun for potentially dangerous geomagnetic storms, the satellite has a camera that will be pointed to the sun-lit side of Earth. Pictures will be taken every two hours and posted on the Internet the following day.

View Article Here   Read More

Elon Musk drops space plans into Seattle’s lap




Excerpt from seattletimes.com

Elon Musk thought three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

Of all the newcomers we’ve seen here lately, one of the more interesting is Elon Musk.

The famous entrepreneur isn’t going to live here, at least not yet. But earlier this month he did announce plans to bulk up an engineering center near Seattle for his SpaceX venture. The invitation-only event was held in the shadow of the Space Needle.
If the plan happens, SpaceX would join Planetary Resources and Blue Origin in a budding Puget Sound space hub. With talent from Boeing, the aerospace cluster and University of Washington, this offers fascinating potential for the region’s future.

Elon Musk sounds like the name of a character from a novel that would invariably include the sentence, “he had not yet decided whether to use his powers for good or for evil.”

He is said to have been the inspiration for the character Tony Stark, played by Robert Downey Jr. in the “Iron Man” movies. He’s also been compared to Steve Jobs and even Thomas Edison.

The real Musk seems like a nice-enough chap, at least based on his ubiquitous appearances in TED talks and other venues.

Even the semidishy essay in Marie Claire magazine by his first wife, Justine, is mostly about the challenge to the marriage as Musk became very rich, very young, started running with a celebrity crowd and exhibited the monomaniacal behavior common to the entrepreneurial tribe.

A native of South Africa, Musk emigrated to Canada and finally to the United States, where he received degrees from the University of Pennsylvania’s prestigious Wharton School. He left Stanford’s Ph.D. program in applied physics after two days to start a business.
In 1995, he co-founded Zip2, an early Internet venture for newspapers. Four years later, he co-founded what would become PayPal. With money from eBay’s acquisition of PayPal, he started SpaceX. He also invested in Tesla Motors, the electric-car company, eventually becoming chief executive. Then there’s Solar City, a major provider of solar-power systems.

Musk has said that early on he sensed three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

At age 43, Musk is seven years younger than Jeff Bezos and more than 15 years younger than Bill Gates.

His achievements haven’t come without controversy. Tesla played off several states against each other for a battery factory. Nevada, desperate to diversify its low-wage economy, won, if you can call it that.

The price tag was $1.4 billion in incentives and whether it ever pays off for the state is a big question. A Fortune magazine investigation showed Musk not merely as a visionary but also a master manipulator with a shaky deal. Musk, no shrinking violet, fired back on his blog.

SpaceX is a combination of the practical and the hyperambitious, some would say dreamy.

On the practical side, the company is one of those chosen by the U.S. government to resupply the International Space Station. Musk also hopes to put 4,000 satellites in low-Earth orbit to provide inexpensive Internet access worldwide.

The satellite venture will be based here, with no financial incentives from the state.

But he also wants to make space travel less expensive, generate “a lot of money” through SpaceX, and eventually establish a Mars colony.

“SpaceX, or some combination of companies and governments, needs to make progress in the direction of making life multiplanetary, of establishing a base on another planet, on Mars — being the only realistic option — and then building that base up until we’re a true multiplanet species,” he said during a TED presentation.

It’s heady stuff. And attractive enough to lead Google and Fidelity Investments to commit $1 billion to SpaceX.

Also, in contrast with the “rent-seeking” and financial plays of so many of the superwealthy, Musk actually wants to create jobs and solve practical problems.

If there’s a cautionary note, it is that market forces alone can’t address many of our most serious challenges. Indeed, in some cases they make them worse.

Worsening income inequality is the work of the hidden hand, unfettered by antitrust regulation, progressive taxation, unions and protections against race-to-the-bottom globalization.

If the hidden costs of spewing more carbon into the atmosphere are not priced in, we have today’s market failure exacerbating climate change. Electric cars won’t fix that as long as the distortions favoring fossil fuels remain.

So a broken, compromised government that’s cutting research dollars and failing to invest in education and forward-leaning infrastructure is a major impediment.

The United States did not reach the moon because of a clever billionaire, but through a national endeavor to serve the public good. I know, that’s “so 20th century.” 

Also, as Northwestern University economist Robert Gordon might argue, visionaries such as Thomas Edison grabbed relatively low-hanging fruit, with electrification creating huge numbers of jobs. 

Merely recovering the lost demand of the Great Recession has proved difficult. Another electrificationlike revolution that lifts all boats seems improbable.

I’m not sure that’s true. But it will take more than Iron Man to rescue the many Americans still suffering.

View Article Here   Read More

SpaceX video demonstrates the future of space launches ~ Video

When Falcon Heavy lifts off later this year, it will be the most powerful operational rocket in the world by a factor of two. Thrust at liftoff is equal to approximately eighteen 747 aircraft operating simultaneously. Excerpt from csmonitor.com...

View Article Here   Read More

Liftoff! SpaceX Gets $1 Billion From Google and Fidelity

 Excerpt from  nbcnews.com SpaceX, the California-based rocket company that now has its sights set on a globe-spanning satellite constellation, says it has received a $1 billion investment from Google and Fidelity that values the c...

View Article Here   Read More

CEO of Tesla Motors is trying to bring the Internet to space

 Excerpt from cnet.com The SpaceX CEO wants to build a satellite network high above Earth that would speed up the Internet and bring access to underserved communities. And he'll use the profits to help colonize Mars.  Elon Musk, the man who...

View Article Here   Read More

Cape hopes to be world’s busiest spaceport in 2016



A United Launch Alliance Delta IV rocket, with the
A United Launch Alliance Delta IV rocket, with the Air Force’s AFSPC-4 mission aboard.(Photo: United Launch Alliance)


Excerpt from news-press.com


With two dozen rockets projected to blast payloads into orbit, Cape Canaveral this year hopes to claim the title of "world's busiest spaceport," the Air Force's 45th Space Wing said Tuesday.
"It's a great time to be here," said Col. Thomas Falzarano, commander of the Wing's 45th Operations Group. "Business is booming."

Falzarano presented the Eastern Range launch forecast to several hundred guests at the National Space Club Florida Committee's meeting in Cape Canaveral.

Weather, technical issues and program changes frequently delay launches, so it's likely some of the missions will slip into next year. But the forecast shows the Space Coast launching at an increasingly busy clip even without human spaceflight missions, which aren't expected to resume for several years.

The 2015 forecast anticipates United Launch Alliance matching last year's total of 10 Cape launches, including eight by Atlas V rockets and two by Delta IV rockets.

And it assumes as many as 14 launches by SpaceX. Last year had six Falcon 9 flights.

That was SpaceX's most launches in a calendar year, but five fewer than was projected last January.


This year the company hopes to activate a second launch pad, complementing its existing one at Cape Canaveral Air Force Station.

The debut of the Falcon Heavy rocket from a former Apollo and shuttle pad at Kennedy Space Center would be one of this year's most highly anticipated launches.

In addition, SpaceX plans to launch more ISS resupply missions, and commercial and government satellites.


ULA's first launch of the year is coming up Tuesday, with an Atlas V targeting a 7:43 p.m. liftoff with a Navy communications satellite.

The Boeing-Lockheed Martin joint venture has its usual slate of high-value science and national security missions. The manifest includes a roughly $1 billion NASA science mission, an X-37B military space plane and more Global Positioning System satellites.

Overall last year, the 45th Space Wing supported 16 space launches — five less than projected last January (all attributed to SpaceX) — plus two Trident missile tests launched from submarines.
That ranked the Cape No. 2 behind the Baikonur Cosmodrome in Kazakstan, Falzarano said.

But with 24 missions potentially on the books this year and more than 30 in various planning stages for 2016, Falzarano said the Eastern Range is facing its busiest two-year stretch in more than two decades.

"The Cape, right here, is going to be the busiest spaceport in the world," he said.



Growing launch rate
2013: 14
2014: 18
2015: 24 (projected)
Source: U.S. Air Force 45th Space Wing

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑