Tag: start (page 7 of 47)

Skywatch: Venus and Jupiter continue to accentuate the night heavens

Venus (right) & Jupiter

Excerpt from washingtonpost.com
By Blaine Friedlander Jr. 
In winter’s waning weeks, Venus and Jupiter continue to accentuate the night heavens, we change our clocks forward and we grab spring with no intention of letting go.

Check the west-southwestern heavens at dusk to spy the vivacious Venus and the dim Mars. In late February, the two planets met for a sweet cosmic waltz, but in March, they appear to separate. Venus approaches negative fourth magnitude (very bright) while Mars makes do at magnitude 1.3 (dim, hard to find in urban light pollution). With a clear sky, Mars looks like a red pinpoint. 

A young, waxing crescent moon visits Mars on the evening of March 21, and on the next evening the crescent flirts with Venus.
Robust Jupiter ascends the evening’s eastern sky. Find this gas giant at a -2.5 magnitude, very bright, in the constellation Cancer. The lion in the constellation Leo appears to stare at the planet. By the Ides of March, find it south around 10:30 p.m. 

The waxing gibbous moon drops by the dazzling Jupiter on March 2, days before the moon itself becomes full on March 5. 

Catch the ringed Saturn rising after midnight in the east-southeast now, hanging out near a gang of constellations, Scorpius, Ophiuchus and Libra. It’s a zero magnitude object, bright enough that it can be seen under urban skies. The waning moon loiters near Saturn before dawn on March 12. On that morning, the reddish star below them is Antares.
We adjust our clocks to Daylight Saving Time at 2 a.m. March 8. Spring forward, moving the clock ahead one hour. 

Winter is almost over. Spring is weeks away. The vernal equinox brings spring’s official arrival on March 20 at 6:45 p.m. 

Also on March 20 — the day a new moon — the North Atlantic and the Arctic waters get a short total eclipse. We won’t see it here, but Slooh.com will carry it live. Totality will start seconds after 5:44 a.m. and end at 5:47 a.m., according to Geoff Chester of the U.S. Naval Observatory. 

View Full Article   Read More

Here’s Why Stephen Hawking Thinks We Should Start Colonizing Planets ASAP

Excerpt from uproxx.com
By  By Andrew Husband 

Chances are most people who think they know who Stephen Hawking is are actually thinking about actor Eddie Redmayne, whose Oscar-nominated performance drives The Theory of Everything. Awards bait aside, Hawking himself has resurfaced for comments made to Adaeze Uyanwah of California during a private tour of London’s Science Museum:
“Sending humans to the moon changed the future of the human race in ways that we don’t yet understand,” he said.
“It hasn’t solved any of our immediate problems on planet Earth, but it has given us new perspectives on them and caused us to look both outward and inward.
“I believe that the long term future of the human race must be space and that it represents an important life insurance for our future survival, as it could prevent the disappearance of humanity by colonising other planets.” (Via The Independent)

View Full Article   Read More

Yes, that 3D-printed mansion is safe to live in

WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. Credit: 3ders.org
WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. 

Excerpt from

Back in April, a team of Chinese construction workers used a 3D printer to construct houses. By day’s end, there were 10 standing. They were compact and fairly bare bones — nothing much to look at besides the “wow!” factor of there being as many as — count them — 10. But this time around, those same builders have taken the wraps off an achievement that’s roundly more impressive.
In Suzhou Industrial Park, adjacent to Shanghai, stands a five-story structure that the WinSun Decoration Design Engineering firm claims is “the world’s tallest 3D-printed building.” Next to it is the equally massive 3D-printed mansion, which measures 11,840 square feet. Like the previous buildings, the walls are comprised of a mix of concrete and recycled waste materials, such as glass and steel, and formed layer by printed layer. The company stated that the total cost for the mansion was roughly $161,000. 
In a broader sense, this latest feat is yet another indication of how rapidly additive manufacturing techniques are advancing. Once used primarily as a means to quickly render miniature model versions of products, the technology has reached a point where large-scale printers are now capable of making life-sized working creations, such as automobiles, in mere days. For instance, it took less than 48 hours for start-up Local Motors to print a two-seater called the Strati into existence and drive it off the showroom.
Many of these designs, however, typically don’t amount to much beyond being passion projects meant to push 3D printing into new frontiers and drum up some publicity along the way. One example of this is the massive 3D Print Canal House that’s being constructed entirely on-site along a canal in Amsterdam, a process that’s slated to take longer and is less feasible than standard construction, Phil Reeves of UK-based 3D printing research firm Econolyst recently told CNN.
More promising, though, is a system developed by Behrokh Khoshnevis, a University of Southern California engineering professor. His concept machine, called Contour Crafting, involves a clever combination of mechanical cranes and 3D layering to print and assemble entire homes simultaneously — complete with insulation and indoor plumbing — in less than a day. 

Assembling 3D printed buildings is quite similar to erecting prefab homes. Credit: 3ders.org
Assembling 3D printed buildings is quite similar to erecting prefab homes. 

The approach employed by WinSun isn’t anywhere near that level of sophistication, but it may well prove to be the most practical – at least thus far. There is some labor and equipment costs that comes from trucking in and piecing together the various sections on-site, though the manner in which it all comes together is comparable to the ease of prefab assembly. It’s also reportedly greener thanks to the addition of recycled materials. 
To pitch the advantages of their technology, the company held a news conference to announce that they had taken on orders for 20,000 smaller units as well as highlight some significant cost-cutting figures. According toindustry news site 3Der:
The sheer size of the printer allows for a 10x increase in production efficiency. WinSun estimates that 3D printing technology can save between 30 and 60 percent of building materials and shortens production times by 50 to even 70 percent, while decreasing labor costs by 50 up to even 80 percent. Future applications include 3D printed bridges or tall office buildings that can be built right on site.
WinSun did not respond to a request to disclose how they arrived at those numbers, but Enrico Dini, an Italian civil engineer and chairman of competing start-up Monolite, says that he suspects the calculations may be a tad bit inflated. Still, he emphasized that his own data does back up the claim that, compared to conventional methods, layering may boost overall efficiency. 
“It would be very difficult to fabricate such large sections with traditional concrete casting,” he says. “With 3D printing, you have a lot less waste because you’re only printing out as much material as you need and you can custom shape whole sections on the spot, which can be a big challenge.”

WinSuns 3D printed villa has several rooms and has been deemed to be up to Chinas national safety standards. Credit: 3ders.org
WinSun’s 3D-printed villa has several rooms and has been deemed to be up to China’s national safety standards.

One major concern is whether these large-scale dwellings can hold up over time against the elements. According to 3Der, Ma Rongquan, chief engineer of China Construction Bureau, inspected the building’s structural integrity and found them to be up to code, but was careful to note that state officials have yet to establish specific criteria for assessing the long-term safety of 3D printed architecture.   
And as Dini, who supports the technology, points out, there is the possibility that the use of additive manufacturing may pose some degree of risk. “The only issue is that as the layers of concrete are bonded together, they’re drying at slightly different rates and that’s not very ideal,” he explains. “So there’s maybe a higher chance of it fracturing at the contact point if there’s a strong enough force at play.” 
Regardless, Dini says he’d feel completely safe going inside any floor of either building since construction materials used today are likely to contain special additives to enhance strength and resistance. One such formulation, fiber-reinforced Ductal, has been shown in some tests to be 10 times stronger and last twice as long as regular concrete. He stressed that walls should also be tested to ensure that other properties, such as acoustics, ventilation and thermal insulations are on par with existing buildings.
“In Italy, building standards are extremely strict,” he noted. “But I can’t say I can say the same about China.”

View Full Article   Read More

NASA probe snaps amazing image of Ceres

    NASA's Dawn space probe has taken the sharpest-yet image of Ceres, a dwarf planet in our solar system's asteroid belt.

    Excerpt from SPACE.com

    By Mike Wall  

    NASA's Dawn spacecraft has taken the sharpest-ever photos of Ceres, just a month before slipping into orbit around the mysterious dwarf planet.

    Dawn captured the new Ceres images Wednesday (Feb. 4), when the probe was 90,000 miles (145,000 kilometers) from the dwarf planet, the largest object in the main asteroid belt between Mars and Jupiter.

    On the night of March 5, Dawn will become the first spacecraft ever to orbit Ceres — and the first to circle two different solar system bodies beyond Earth. (Dawn orbited the protoplanet Vesta, the asteroid belt's second-largest denizen, from July 2011 through September 2012.) 

    "It's very exciting," Dawn mission director and chief engineer Marc Rayman, who's based at NASA's Jet Propulsion Laboratory in Pasadena, California, said of Dawn's impending arrival at Ceres. "This is a truly unique world, something that we've never seen before."

    The 590-mile-wide (950 km) Ceres was discovered by Italian astronomer Giuseppe Piazzi in 1801. It's the only dwarf planet in the asteroid belt, and contains about 30 percent of the belt's total mass. (For what it's worth, Vesta harbors about 8 percent of the asteroid belt's mass.)

    Despite Ceres' proximity (relative to other dwarf planets such as Pluto and Eris, anyway), scientists don't know much about the rocky world. But they think it contains a great deal of water, mostly in the form of ice. Indeed, Ceres may be about 30 percent water by mass, Rayman said.

    Ceres could even harbor lakes or oceans of liquid water beneath its frigid surface. Furthermore, in early 2014, researchers analyzing data gathered by Europe's Herschel Space Observatory announced that they had spotted a tiny plume of water vapor emanating from Ceres. The detection raised the possibility that internal heat drives cryovolcanism on the dwarf planet, as it does on Saturn's moon's Enceladus. (It's also possible that the "geyser" was caused by a meteorite impact, which exposed subsurface ice that quickly sublimated into space, researchers said).

    The interior of Ceres may thus possess liquid water and an energy source — two key criteria required for life as we know it to exist.
    Dawn is not equipped to search for signs of life. But the probe — which is carrying a camera, a visible and infrared mapping spectrometer and a gamma ray and neutron spectrometer — will give scientists great up-close looks at Ceres' surface, which in turn could shed light on what's happening down below. 

    For example, Dawn may see chemical signs of interactions between subsurface water, if it exists, and the surface, Rayman said.
    "That's the sort of the thing we would be looking for — surface structures or features that show up in the camera's eye, or something about the composition that's detectable by one of our multiple spectrometers that could show evidence," he told Space.com. "But if the water doesn't make it to the surface, and isn't in large enough reservoirs to show up in the gravity data, then maybe we won't find it."

    Dawn will also attempt to spot Ceres' water-vapor plume, if it still exists, by watching for sunlight scattered off water molecules above the dwarf planet. But that's going to be a very tough observation to make, Rayman said.

    "The density of the water [observed by Herschel] is less than the density of air even above the International Space Station," he said. "For a spacecraft designed to map solid surfaces of airless bodies, that is an extremely difficult measurement." 

    Merging onto the freeway

    Dawn is powered by low-thrust, highly efficient ion engines, so its arrival at Ceres will not be a nail-biting affair featuring a make-or-break engine burn, as most other probes' orbital insertions are.

    Indeed, as of Friday (Feb. 6), Dawn is closing in on Ceres at just 215 mph (346 km/h), Rayman said —and that speed will keep decreasing every day.

    "You take a gentle, curving route, and then you slowly and safely merge onto the freeway, traveling at the same speed as your destination," Rayman said. "Ion propulsion follows that longer, more gentle, more graceful route."

    Dawn won't start studying Ceres as soon as it arrives. The spacecraft will gradually work its way down to its first science orbit, getting there on April 23. Dawn will then begin its intensive observations of Ceres, from a vantage point just 8,400 miles (13,500 km) above the dwarf planet's surface.

    The science work will continue — from a series of increasingly closer-in orbits, including a low-altitude mapping orbit just 230 miles (375 km) from Ceres' surface — through June 30, 2016, when the $466 million Dawn mission is scheduled to end.
    Rayman can't wait to see what Dawn discovers.

    "After looking through telescopes at Ceres for more than 200 years, I just think it's really going to be exciting to see what this exotic, alien world looks like," he said. "We're finally going to learn about this place."

    View Full Article   Read More

    Jupiter at its biggest, brightest for two weeks

    Excerpt from pressofatlanticcity.comBy FRED SCHAAF  ...

    View Full Article   Read More

    Elon Musk drops space plans into Seattle’s lap

    Excerpt from seattletimes.com

    Elon Musk thought three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

    Of all the newcomers we’ve seen here lately, one of the more interesting is Elon Musk.

    The famous entrepreneur isn’t going to live here, at least not yet. But earlier this month he did announce plans to bulk up an engineering center near Seattle for his SpaceX venture. The invitation-only event was held in the shadow of the Space Needle.
    If the plan happens, SpaceX would join Planetary Resources and Blue Origin in a budding Puget Sound space hub. With talent from Boeing, the aerospace cluster and University of Washington, this offers fascinating potential for the region’s future.

    Elon Musk sounds like the name of a character from a novel that would invariably include the sentence, “he had not yet decided whether to use his powers for good or for evil.”

    He is said to have been the inspiration for the character Tony Stark, played by Robert Downey Jr. in the “Iron Man” movies. He’s also been compared to Steve Jobs and even Thomas Edison.

    The real Musk seems like a nice-enough chap, at least based on his ubiquitous appearances in TED talks and other venues.

    Even the semidishy essay in Marie Claire magazine by his first wife, Justine, is mostly about the challenge to the marriage as Musk became very rich, very young, started running with a celebrity crowd and exhibited the monomaniacal behavior common to the entrepreneurial tribe.

    A native of South Africa, Musk emigrated to Canada and finally to the United States, where he received degrees from the University of Pennsylvania’s prestigious Wharton School. He left Stanford’s Ph.D. program in applied physics after two days to start a business.
    In 1995, he co-founded Zip2, an early Internet venture for newspapers. Four years later, he co-founded what would become PayPal. With money from eBay’s acquisition of PayPal, he started SpaceX. He also invested in Tesla Motors, the electric-car company, eventually becoming chief executive. Then there’s Solar City, a major provider of solar-power systems.

    Musk has said that early on he sensed three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

    At age 43, Musk is seven years younger than Jeff Bezos and more than 15 years younger than Bill Gates.

    His achievements haven’t come without controversy. Tesla played off several states against each other for a battery factory. Nevada, desperate to diversify its low-wage economy, won, if you can call it that.

    The price tag was $1.4 billion in incentives and whether it ever pays off for the state is a big question. A Fortune magazine investigation showed Musk not merely as a visionary but also a master manipulator with a shaky deal. Musk, no shrinking violet, fired back on his blog.

    SpaceX is a combination of the practical and the hyperambitious, some would say dreamy.

    On the practical side, the company is one of those chosen by the U.S. government to resupply the International Space Station. Musk also hopes to put 4,000 satellites in low-Earth orbit to provide inexpensive Internet access worldwide.

    The satellite venture will be based here, with no financial incentives from the state.

    But he also wants to make space travel less expensive, generate “a lot of money” through SpaceX, and eventually establish a Mars colony.

    “SpaceX, or some combination of companies and governments, needs to make progress in the direction of making life multiplanetary, of establishing a base on another planet, on Mars — being the only realistic option — and then building that base up until we’re a true multiplanet species,” he said during a TED presentation.

    It’s heady stuff. And attractive enough to lead Google and Fidelity Investments to commit $1 billion to SpaceX.

    Also, in contrast with the “rent-seeking” and financial plays of so many of the superwealthy, Musk actually wants to create jobs and solve practical problems.

    If there’s a cautionary note, it is that market forces alone can’t address many of our most serious challenges. Indeed, in some cases they make them worse.

    Worsening income inequality is the work of the hidden hand, unfettered by antitrust regulation, progressive taxation, unions and protections against race-to-the-bottom globalization.

    If the hidden costs of spewing more carbon into the atmosphere are not priced in, we have today’s market failure exacerbating climate change. Electric cars won’t fix that as long as the distortions favoring fossil fuels remain.

    So a broken, compromised government that’s cutting research dollars and failing to invest in education and forward-leaning infrastructure is a major impediment.

    The United States did not reach the moon because of a clever billionaire, but through a national endeavor to serve the public good. I know, that’s “so 20th century.” 

    Also, as Northwestern University economist Robert Gordon might argue, visionaries such as Thomas Edison grabbed relatively low-hanging fruit, with electrification creating huge numbers of jobs. 

    Merely recovering the lost demand of the Great Recession has proved difficult. Another electrificationlike revolution that lifts all boats seems improbable.

    I’m not sure that’s true. But it will take more than Iron Man to rescue the many Americans still suffering.

    View Full Article   Read More

    SpaceX video demonstrates the future of space launches ~ Video

    When Falcon Heavy lifts off later this year, it will be the most powerful operational rocket in the world by a factor of two. Thrust at liftoff is equal to approximately eighteen 747 aircraft operating simultaneously. Excerpt from csmonitor.com...

    View Full Article   Read More

    Older posts Newer posts

    Creative Commons License
    This work is licensed under a
    Creative Commons Attribution 4.0
    International License
    unless otherwise marked.

    Terms of Use | Privacy Policy

    Up ↑