Tag: suns (page 1 of 3)

Pleiadians – Light Partners with Nature – September-11-2016

View Article Here   Read More

Nuestro Dios Mismo 8 de agosto de, 2016

View Article Here   Read More

Astronomers find baby blue galaxy close to dawn of time

Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen. Photo: Pascal Oesch and Ivelina Momcheva, NASA, European Space Agency via AP

Excerpt from smh.com.au

A team of astronomers peering deep into the heavens have discovered the earliest, most distant galaxy yet, just 670 million years after the Big Bang.

Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen.
Close-up of the blue galaxy

The findings, described in Astrophysical Journal Letters, reveal a surprisingly active, bright galaxy near the very dawn of the cosmos that could shed light on what the universe, now 13.8 billion years old, was really like in its young, formative years.

"We're actually looking back through 95 per cent of all time to see this galaxy," said study co-author Garth Illingworth, an astronomer at the University of California, Santa Cruz.

"It's really a galaxy in its infancy ... when the universe was in its infancy."

Capturing an image from a far-off light source is like looking back in time. When we look at the sun, we're seeing a snapshot of what it looked like eight minutes ago.

The same principle applies for the light coming from the galaxy known as EGS-zs8-1. We are seeing this distant galaxy as it existed roughly 13.1 billion years ago.

EGS-zs8-1 is so far away that the light coming from it is exceedingly faint. And yet, compared with other distant galaxies, it is surprisingly active and bright, forming stars at roughly 80 times the rate the Milky Way does today.

This precocious little galaxy has built up the mass equivalent to about 8 billion suns, more than 15 per cent of the mass of the Milky Way, even though it appears to have been in existence for a mere fraction of the Milky Way's more than 13 billion years.

"If it was a galaxy near the Milky Way [today], it would be this vivid blue colour, just because it's forming so many stars," Illingworth said.

One of the many challenges with looking for such faint galaxies is that it's hard to tell if they're bright and far, or dim and near. Astronomers can usually figure out which it is by measuring how much that distant starlight gets stretched, "redshifted", from higher-energy light such as ultraviolet down to optical and then infrared wavelengths. The universe is expanding faster and faster, so the further away a galaxy is, the faster it's going, and the more stretched, or "redder", those wavelengths of light will be.

The astronomers studied the faint light from this galaxy using NASA's Hubble and Spitzer space telescopes. But EGS-zs8-1 seemed to be too bright to be coming from the vast distances that the Hubble data suggested.

To narrow in, they used the MOSFIRE infrared spectrograph at the Keck I telescope in Hawaii to search for a particularly reliable fingerprint of hydrogen in the starlight known as the Lyman-alpha line. This fingerprint lies in the ultraviolet part of the light spectrum, but has been shifted to redder, longer wavelengths over the vast distance between the galaxy and Earth.

It's a dependable line on which to base redshift (and distance) estimates, Illingworth said - and with that settled, the team could put constraints on the star mass, star formation rate and formation epoch of this galaxy.

The telltale Lyman-alpha line also reveals the process through which the universe's haze of neutral hydrogen cleared up, a period called the epoch of reionisation. As stars formed and galaxies grew, their ultraviolet radiation eventually ionised the hydrogen and ended the "dark ages" of the cosmos.

Early galaxies-such as EGS-zs8-1 - are "probably the source of ultraviolet radiation that ionised the whole universe", Illingworth said.

Scientists have looked for the Lyman-alpha line in other distant galaxies and come up empty, which might mean that their light was still being blocked by a haze of neutral hydrogen that had not been ionised yet.

But it's hard to say with just isolated examples, Illingworth pointed out. If scientists can survey many galaxies from different points in the universe's very early history, they can have a better sense of how reionisation may have progressed.

"We're trying to understand how many galaxies do have this line - and that gives us some measure of when the universe itself was reionised," Illingworth said.

"One [galaxy] is interesting, but it's when you have 50 that you can really say something about what galaxies were really like then."
As astronomers push the limits of current telescopes and await the completion of NASA's James Webb Space Telescope, set for launch in 2018, scientists may soon find more of these galaxies even closer to the birth of the universe than this new record breaker.

"You don't get to be record holder very long in this business," Illingworth said, "which is good because ultimately we are trying to learn about the universe. So more is better."

View Article Here   Read More

Radio bursts from space reveal strange mathematical pattern

Excerpt from foxnews.com

Eleven fast radio bursts from space seem to follow a strange mathematical pattern, according to a new study – and it has researchers scratching their heads. 

According to study co–authors Michael Hippke of the Institute of Data Analysis in Neukirchen-Vluyn,  Germany, and John Learned of the University of Hawaii in Manoa, the bursts– which were first detected in 2001 – all had dispersion measures that were integer multiples of the same number: 187.5. “The astronomers that found [the bursts] have not seen such things before and do not understand them,” Learned told FoxNews.com.

Nobody knows what causes fast radio bursts, known as FRBs. They only last a few milliseconds, and only one so far has been captured live (by the Parkes Telescope in Australia last year). Though the bursts release just as much energy in a few milliseconds as the sun does in a month, their brevity indicates that the source must be small, with estimates being several hundred miles across at most.

Researchers use dispersion measures, which records how much “space gunk” the burst has passed through, to estimate the distance an FRB has travelled. For instance, a low frequency FRB will have more gunk on it, indicating a longer trip, whereas a high frequency FRB will be cleaner, indicating it came from closer to Earth.
The fact that all of the FRBs’ dispersion measures are integer multiples of 187.5 has, according to Hippke and Learned’s team’s calculations, a 5 in 10,000 chance of being coincidental. The dispersion measures also indicate that their origin is relatively close to Earth, but unlikely from within our own galaxy.

There are numerous theories on where these bursts came from, including speculation that the messages are from extraterrestrial intelligence. To the scientific community, however, this theory doesn’t really hold water, and is seen as more of a last resort only after all other avenues have been exhausted.

“We think these are likely from some very energetic process, like a burst from a high magnetic field neutron star or energy released [when] two neutron stars merge,” Professor Maura McLaughlin of the West Virginia University Center for Astrophysics explained. “The thing that made people think they were possibly from ETs was a recent paper that showed that one fundamental property is quantized in a way that wouldn't be expected if the signals were naturally occurring. However, I imagine that correlation will totally go away once more are discovered.”

Learned himself is dubious of an alien source as well, noting that he and Hippke only noted the dispersion measures’ “peculiar” pattern, and that they may even be coming from Earth. “We are now leaning more towards a terrestrial, anthropogenic interpretation,” he said. “At this point I would place my money on some sort of governmental satellite, not a natural phenomena, but I would not bet much.  More data, which reportedly [is] being analyzed but which we have no insider information about yet, will be most interesting and refute or confirm our hypotheses.” He also noted that he’d only look to an ETI interpretation once all other possibilities have been eliminated.

As for McLaughlin, she believes there’s no way the FRBs could be messages from aliens, as the signals are very broadband and emitted over a wide range of radio frequencies. “It would take a LOT of energy for an alien civilization to produce these bursts - they'd need to harness the energy of many, many suns - and there's no real advantage for communication to send a signal over such a large bandwidth.”

View Article Here   Read More

Huge Alien Planet Bathes in the Light of Four Suns

30 Ari with its newly discovered companion stars
Karen Teramura

Excerpt from nbcnews.com

Astronomers have spotted a fourth star in a planetary system called 30 Ari, bringing the number of known planet-harboring quadruple-sun systems to two. 

"Star systems come in myriad forms. There can be single stars, binary stars, triple stars, even quintuple star systems," study lead author Lewis Roberts, of NASA's Jet Propulsion Laboratory, said in a statement. "It's amazing the way nature puts these things together." 

30 Ari lies 136 light-years from the sun in the constellation Aries. Astronomers discovered a giant planet in the system in 2009; the world is about 10 times more massive than Jupiter and orbits its primary star every 335 days. There's also a pair of stars that lie approximately 1,670 astronomical units away. (One AU is the distance between Earth and the sun — about 93 million miles, or 150 million kilometers).

The newfound star circles its companion once every 80 years, at a distance of just 22 AU, but it does not appear to affect the exoplanet's orbit despite such proximity. This is a surprising result that will require further observations to understand, researchers said. 

To a hypothetical observer cruising through the giant planet's atmosphere, the sky would appear to host one small sun and two bright stars visible in daylight. With a large enough telescope, one of the bright stars could be resolved into a binary pair. 

The discovery marks just the second time a planet has been identified in a four-star system. The first four-star planet, PH1b or Kepler-64b, was spotted in 2012 by citizen scientists using publicly available data from NASA's Kepler mission. 

Planets with multiple suns have become less of a novelty in recent years, as astronomers have found a number of real worlds that resemble Tatooine, Luke Skywalker's home planet in the Star Wars films. 

The research was published online this month in the Astronomical Journal.

View Article Here   Read More

Why Luke Skywalker’s binary sunset may be real after all

Excerpt from csmonitor.com

Researchers have found Jupiter-scale gas giants orbiting binary stars and estimate that Earth-like planets orbiting binary stars could be as numerous as rocky planets orbiting single-star systems.

For all the sci-fi charm of watching a pair of suns sink below a distant horizon on a planet in a galaxy far, far away, conventional wisdom has held that binary-star systems can't host Earth-scale rocky planets.

As the two stars orbit each other like square-dance partners swinging arm in arm, regular variations in their gravitational tug would disrupt planet formation at the relatively close distances where rocky planets tend to appear.

Not so fast, say two astrophysicists. They argue that only are Tatooine-like planets likely to be out there. They could be as numerous as rocky planets orbiting single-star systems – which is to say, there could be large number of them.

Building rocky planets in a binary system not only is possible, it's "not even that hard," says Scott Kenyon, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who along with University of Utah astrophysicist Benjamin Bromley performed the calculations.
Researchers have found Jupiter-scale gas giants orbiting binary stars and have estimated that such gas giants are likely to be as common in binary systems as they are in systems with a single star.
"If that's true, then Earth-like planets around binaries are just as common as Earth-like planets around single stars," Dr. Kenyon says. "If they're not common, that tells you something about how they form or how they interact with the star over billions of years."

The modeling study grew out of work the two researchers were undertaking to figure out how the dwarf planet Pluto and its largest moon Charon manage to share space with four smaller moons that orbit the two larger objects. 

Pluto and Charon form a binary system that early in its history saw the two objects graze each other to generate a ring of dust that would become the additional moons.

The gravity the surrounding dust felt as Pluto and Charon swung about their shared center of mass would vary with clock-like precision.

Conventional wisdom held that this variable tug would trigger collisions at speeds too fast to allow the dust and larger chunks to merge into ever larger objects.

Kenyon and Dr. Bromley found that, in fact, the velocities would be smaller than people thought – no greater than the speeds would be around a single central object, where velocities are slow enough to allow the debris to bump gently and merge to build ever-larger objects.

They recognized that binary stars hosting planets are essentially scaled-up versions of the Pluto-Charon system. So they applied their calculations to a hypothetical binary star system with a circumstellar disk of dust and debris.

"The modest jostling in these orbits is the same modest jostling you'd get around a single star," Kenyon says, allowing rocky inner planets to form.

As for the Jupiter- or Neptune-scale planets found around binary stars, they would have formed farther out and migrated in over time, the researchers say, since there is too little material within the inner reaches of a circumstellar disk to build giant planets.

The duo's calculations imply that as more planets are discovered orbiting binary stars, a rising number of Tatooines will be among them. 

Tatooine "was science fiction," Kenyon says. But "it's not so far from science reality."

View Article Here   Read More

NASA video illustrates ‘X-ray wind’ blasting from a black hole

This artist's illustration shows interstellar gas, the raw material of star formation, being blown away.Excerpt from cnet.com It takes a mighty wind to keep stars from forming. Researchers have found one in a galaxy far, far away -- and NASA mad...

View Article Here   Read More

Have Aliens Left The Universe? Theory Predicts We’ll Follow

Excerpt from robertlanza.com

In Star Wars, the bars are bustling with all types of alien creatures. And then, of course, there’s Yoda and Chewbacca. Recently, renowned scientist Stephen Hawking stated that he too believes aliens exist: “To my mathematical brain, the numbers alone make thinking about aliens perfectly rational.”

Hawking thinks we should be cautious about interacting with aliens — that they might raid Earth’s resources, take our ores, and then move on like pirates. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”
But where are they all anyhow?

For years, NASA and others have been searching for extraterrestrial intelligence. The universe is 13.7 billion years old and contains some 10 billion trillion stars. Surely, in this lapse of suns, advanced life would have evolved if it were possible. Yet despite half a century of scanning the sky, astronomers have failed to find any evidence of life or to pick up any of the interstellar radio signals that our great antennas should be able to easily detect.

Some scientists point to the “Fermi Paradox,” noting that extraterrestrials should have had plenty of time to colonize the entire galaxy but that perhaps they’ve blown themselves up. It’s conceivable the problem is more fundamental and that the answer has to do with the evolutionary course of life itself.

Look at the plants in your backyard. What are they but a stem with roots and leaves bringing nutriments to the organism? After billions of years of evolution, it was inevitable life would acquire the ability to locomote, to hunt and see, to protect itself from competitors. 
Observe the ants in the woodpile — they can engage in combat just as resolutely as humans. Our guns and ICBM are merely the mandibles of a cleverer ant. The effort for self-preservation is vague and varied. But when we’ve overcome our struggles, what do we do next? Build taller and more splendid houses?

What happens after life completes its transition to perfection? Perhaps across space, more advanced intelligences have taken the next evolutionary step. Perhaps they’ve evolved beyond the three dimensions we vertebrates know. A new theory — Biocentrism — tells us that space and time aren’t physical matrices, but simply tools our mind uses to put everything together. These algorithms are the key to consciousness, and why space and time — indeed the properties of matter itself — are relative to the observer. More advanced civilizations would surely understand these algorithms well enough to create realities that we can’t even imagine, and to have expanded beyond our corporeal cage.

Like breathing, we take for granted how our mind puts everything together. I can recall a dream I had of a flying saucer landing in Times Square. It was so real it took awhile to convince myself that it was a dream (that I was actually at home in bed). I was standing in a crowd surrounded by skyscrapers when a massive spaceship appeared overhead. Everyone started running. My mind had somehow generated this spatio-temporal experience out of electrochemical information. I could feel the vibrations under my feet as the ship started to land, merging this 3D world with my inner thoughts and sensations.

Although I was in bed with my eyes closed, I was able to run and move my arms and fingers. My mind had created a fully functioning body and placed it in a virtual world (replete with clouds in the sky and the Sun) that was indistinguishable from the one I’m in right now. Life as we know it is defined by this spatial-temporal logic, which traps us in the universe of up and down. But like my dream, quantum theory confirms that the properties of particles in the “real” world are also observer-determined.

Other information systems surely exist that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time as we know it. In fact, the simplest invertebrates may only experience existence in one dimension of space. Evolutionary biology suggests life has progressed from a one dimensional reality, to two dimensions to three dimensions, and there’s no scientific reason to think that the evolution of life stops there.

Advanced civilizations would certainly have changed the algorithms so that instead of being trapped in the linear dimensions we find ourselves in, their consciousness moves through the multiverse and beyond. Why would Aliens build massive ships and spend thousands of years to colonize planetary systems (most of which are probably useless and barren), when they could simply tinker with the algorithms and get whatever they want?

Life on Earth is just beginning to send its shoots upward into the heavens. We’ve even flung a piece of metal outside the solar system. Affixed to the spacecraft is a record with greetings in 60 languages. One can’t but wonder whether some civilization more advanced than ours will come upon it. Or will it just drift across the gulf of space? To me the answer is clear. But in case I’m wrong, I have a pitch fork guarding the ore in my backyard.

View Article Here   Read More

Monster Black Hole’s Mighty Belch Could Transform Our Entire Galaxy

This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.
This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.

Except from space.com

A ravenous, giant black hole has belched up a bubble of cosmic wind so powerful that it could change the fate of an entire galaxy, according to new observations.
Researchers using two X-ray telescopes have identified a cosmic wind blowing outward from the supermassive black hole at the center of galaxy PDS 456. Astronomers have seen these winds before, but the authors of the new research say this is the first observation of a wind moving away from the center in every direction, creating a spherical shape.
The wind could have big implications for the future of the galaxy: It will cut down on the black hole's food supply, and slow star formation in the rest of the galaxy, the researchers said. And it's possible that strong cosmic winds are a common part of galaxy evolution — they could be responsible for turning galaxies from bright, active youngsters to quiet middle-agers. 

Big eater

The supermassive black hole at the center of PDS 456 is currently gobbling up a substantial amount of food: A smorgasbord of gas and dust surrounds the black hole and is falling into the gravitational sinkhole.
As matter falls, it radiates light. The black hole at the center of PDS 456 is devouring so much matter, that the resulting radiation outshines every star in the galaxy. These kinds of bright young galaxies are known as quasars: a galaxy with an incredibly bright center, powered by a supermassive black hole with a big appetite.
New observations of PDS 456 have revealed a bubble of gas moving outward, away from the black hole. Using NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton, the authors of the new research imaged the galaxy on five separate occassions in 2013 and 2014. The researchers say they can show that the photons of light emitted by the in-falling matter are pushing on nearby gas, creating the wind.
Scientists have studied these cosmic winds before, but the authors of the new research say their work goes a step further.
"It tells us that the shape of the wind is not just a narrow beam pointed in our direction. It is really a wind that is flowing in every direction away from the black hole," said Emanuele Nardini, a postdoctoral researcher at Keele University in Staffordshire, England. "With a spherical wind, the amount of mass it carries out is much larger than just a narrow beam."
According to a statement from NASA, galaxy PDS 456 "sustains winds that carry more energy every second than is emitted by more than a trillion suns." Such powerful winds could change the entire landscape of PDS 456, the researchers say. First, the wind will blow through the disk of matter surrounding the black hole — this disk currently serves as the black hole's food supply. The cosmic wind created by the black hole's appetite could significantly reduce or destroy the disk. In other words, the black hole cannot have its cake and eat it, too. 

Bright young things

With no matter left to fall into the black hole, the radiation would cease as well. The brilliant center of the quasar will dim. By diminishing the black hole's food supply, they may turn quasars and other "active galaxies" like PDS 456 into quiescent galaxies like the Milky Way. Theorists have proposed that cosmic winds could explain why there are more young active galaxies than old active galaxies.
"We know that in almost every galaxy, a supermassive black hole resides in the center," said Nardini. "But, most of the galaxies we see today are quiescent, they are not active in any way. The fact that galaxies today are quiescent — we have to find an explanation for that in something that happened a long time ago."
In addition to quenching the radiation from an active black hole, these cosmic winds may slow down star formation in galaxies. The cosmic wind could blow through regions thick with gas and dust, where young stars form, and thin out the fertile stellar soil.
"If you have a black hole with this kind of wind, in millions of years [the winds] will be able to quench star formation and create a galaxy like our own," Nardini said. Stars will still form in the Milky Way, but not at the high rate of many young galaxies.
It's possible that these cosmic winds are a central reason why most galaxies go from being brightly burning active youngsters to quiet middle-agers.

View Article Here   Read More

Aliens Even More Likely Now To Be Out There ~ Average star has two potentially Earth-like worlds

Concept art depicting the lights of an ET civilisation on an exoplanet. Credit: David A Aguilar (CfA)

Excerpt from theregister.co.uk

Boffins in Australia have applied a hundreds-of-years-old astronomical rule to data from the Kepler planet-hunting space telescope. They've come to the conclusion that the average star in our galaxy has not one but two Earth-size planets in its "goldilocks" zone where liquid water - and thus, life along Earthly lines - could exist.

“The ingredients for life are plentiful, and we now know that habitable environments are plentiful,” says Professor Charley Lineweaver, a down-under astrophysicist.

Lineweaver and PhD student Tim Bovaird worked this out by reviewing the data on exoplanets discovered by the famed Kepler planet-hunter space scope. Kepler naturally tends to find exoplanets which orbit close to their parent suns, as it detects them by the changes in light they make by passing in front of the star. As a result, most Kepler exoplanets are too hot for liquid water to be present on their surfaces, which makes them comparatively boring.
Good planets in the "goldilocks" zone which is neither too hot nor too cold are much harder to detect with Kepler, which is a shame as these are the planets which might be home to alien life - or alternatively, home one day to transplanted Earth life including human colonists, once we've cracked that pesky interstellar travel problem.

However there exists a thing called the Titius-Bode relation - aka Bode's Law - which can be used, once you know where some inner planets are, to predict where ones further out will be found.

Assuming Bode's Law works for other suns as it does here, and inputting the positions of known inner exoplanets found by Kepler, Lineweaver and Bovaird found that on average a star in our galaxy has two planets in its potentially-habitable zone.

That doesn't mean there are habitable or inhabited planets at every star, of course. Even here in our solar system, apparently lifeless (and not very habitable) Mars is in the habitable zone.

Even so, there are an awful lot of planets in the galaxy, so some at least ought to have life on them, and in some cases this life ought to have achieved a detectable civilisation. Prof Lineweaver admits that the total lack of any sign of this is a bit of a puzzler.

"The universe is not teeming with aliens with human-like intelligence that can build radio telescopes and space ships," admits the prof. "Otherwise we would have seen or heard from them.
“It could be that there is some other bottleneck for the emergence of life that we haven’t worked out yet. Or intelligent civilisations evolve, but then self-destruct.”

Of course, humans - some approximations of which have been around for some hundreds of thousands of years, perhaps - have only had civilisation of any kind in any location for a few thousand of those years. Our civilisation has only risen to levels where it could be detectable across interstellar distances very recently.

There may be many planets out there inhabited by intelligent aliens who either have no civilisation at all, or only primitive civilisation. There may be quite a few who have reached or passed the stage of emitting noticeable amounts of radio or other telltale signs, but those emissions either will not reach us for hundreds of thousands of years - or went past long ago.

It would seem reasonable to suspect that there are multitudes of worlds out there where life exists in plenty but has never become intelligent, as Earth life was for millions of years before early humans began using tools really quite recently.

But the numbers are still such that the apparent absence of star-travelling aliens could make you worry about the viability of technological civilisation if, like Professor Lineweaver, you learn your astrophysics out of textbooks and lectures (and publish your research, as we see here, in hefty boffinry journals like the Monthly Notices of the Royal Astronomical Society).

But if movies, speculofictive novels and TV have taught us anything here on the Reg alien life desk, it is that in fact the galaxy is swarming with star-travelling aliens (and/or humans taken secretly from planet Earth for mysterious purposes in the past, or perhaps humans from somewhere else etc). The reason we don't know about them is that they don't want us to.

View Article Here   Read More

The Best Star Gazing Binoculars for 2015

Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.

Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 

Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 

Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 

Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 

Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 

Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here   Read More

Age of stars can now be pinned to their spin

Excerpt from bbc.comAstronomers have proved that they can accurately tell the age of a star from how fast it is spinning. We know that stars slow down over time, but until recently there was little data to support exact calculations. For ...

View Article Here   Read More

Top 6 tips for using ordinary binoculars for stargazing

Excerpt from earthsky.org

Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.

4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters

5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?

6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
unless otherwise marked.

Terms of Use | Privacy Policy

Up ↑