Tag: uncertain (page 1 of 3)

What’s in Your DNA Akashic Records ~ Selacia

View Article Here   Read More

Judas Iscariot via Ann Dahlberg January 01 2017

View Article Here   Read More

Much Is Going On Behind Scenes Ensure LIGHT Wins Mike Quinsey 11-18-16 Galactic Federation of Light

View Article Here   Read More

Update durch Sheldan Nidle – 25 Oktober 2016

View Article Here   Read More

Mike Quinsey – Higher Self – September-16-2016

View Article Here   Read More

How the Rothschild’s Gained Control of the British Stock Market

By Mika HamiltonHistory offers many insights into our financial world. Of course, while in history class the teachers focus on the topics of wars and victories. What they leave out that could change the way our youth views the world of finances. Instead, students must enroll in a economic class or business class and shuffle their way through the lessons, hoping they are prepared for the future. Maybe we should start teaching a broader view of history that goes beyond who won and who [...]

View Article Here   Read More

Air Force to Test Futuristic ‘Hall Thruster’ on X-37B Space Plane

Vandenberg Air Force Base
The X-37B before its first trip to space.

Excerpt from nbcnews.com

After years of silence on all but the most prosaic aspects of the secretive X-37B space plane program, the Defense Department has revealed that the mysterious, truck-sized craft's next mission will host an experimental new thrust system that could greatly improve the shelf life of satellites. 

The X-37B program has sent its shuttle-like Orbital Test Vehicle craft into space three times for a total time in orbit of almost four years. What the spacecraft has been doing up there is anybody's guess — its creators have declined to comment except to say that everything is working properly. But a news release this week from the Air Force says in no uncertain terms that the next flight of the X-37B, set to begin next month, will be the platform for testing a Hall thruster.

Hall thrusters combine electricity and a noble gas like xenon to produce a miniscule amount of direct force — weak in comparison with thrusters that use ordinary solid fuel, but at a far lesser cost of fuel. Trading power for fuel efficiency would allow satellites and probes to make course adjustments for much longer, extending their lives and versatility. Spaceflight Now has more details on how the system works. 

Of course, this sheds no light on what the last three X-37B missions were — but in light of this new information it seems more likely that it's a test bed for high-tech space experiments, and not an orbital bomber or elite spy satellite. But you never know.

View Article Here   Read More

Planck telescope puts new datestamp on first stars

Polarisation of the sky
Planck has mapped the delicate polarisation of the CMB across the entire sky

Excerpt from bbc.com

Scientists working on Europe's Planck satellite say the first stars lit up the Universe later than previously thought.

The team has made the most precise map of the "oldest light" in the cosmos.

Earlier observations of this radiation had suggested the first generation of stars were bursting into life by about 420 million years after the Big Bang.

Planck's data indicates this great ignition was well established by some 560 million years after it all began.

"This difference of 140 million years might not seem that significant in the context of the 13.8-billion-year history of the cosmos, but proportionately it's actually a very big change in our understanding of how certain key events progressed at the earliest epochs," said Prof George Efstathiou, one of the leaders of the Planck Science Collaboration.

Subtle signal

The assessment is based on studies of the "afterglow" of the Big Bang, the ancient light called the Cosmic Microwave Background (CMB), which still washes over the Earth today.
Prof George Efstathiou: "We don't need more complicated explanations"

The European Space Agency's (Esa) Planck satellite mapped this "fossil" between 2009 and 2013.

It contains a wealth of information about early conditions in the Universe, and can even be used to work out its age, shape and do an inventory of its contents.

Scientists can also probe it for very subtle "distortions" that tell them about any interactions the CMB has had on its way to us.

Forging elements

One of these would have been imprinted when the infant cosmos underwent a major environmental change known as re-ionisation.

Prof Richard McMahon: "The two sides of the bridge now join"
It is when the cooling neutral hydrogen gas that dominated the Universe in the aftermath of the Big Bang was then re-energised by the ignition of the first stars.

These hot giants would have burnt brilliant but brief lives, producing the very first heavy elements. But they would also have "fried" the neutral gas around them - ripping electrons off the hydrogen protons.

And it is the passage of the CMB through this maze of electrons and protons that would have resulted in it picking up a subtle polarisation.

ImpressionImpression: The first stars would have been unwieldy behemoths that burnt brief but brilliant lives

The Planck team has now analysed this polarisation in fine detail and determined it to have been generated at 560 million years after the Big Bang.

The American satellite WMAP, which operated in the 2000s, made the previous best estimate for the peak of re-ionisation at 420 million years. 

The problem with that number was that it sat at odds with Hubble Space Telescope observations of the early Universe.

Hubble could not find stars and galaxies in sufficient numbers to deliver the scale of environmental change at the time when WMAP suggested it was occurring.

Planck's new timing "effectively solves the conflict," commented Prof Richard McMahon from Cambridge University, UK.

"We had two groups of astronomers who were basically working on different sides of the problem. The Planck people came at it from the Big Bang side, while those of us who work on galaxies came at it from the 'now side'. 

"It's like a bridge being built over a river. The two sides do now join where previously we had a gap," he told BBC News.

That gap had prompted scientists to invoke complicated scenarios to initiate re-ionisation, including the possibility that there might have been an even earlier population of giant stars or energetic black holes. Such solutions are no longer needed.

No-one knows the exact timing of the very first individual stars. All Planck does is tell us when large numbers of these stars had gathered into galaxies of sufficient strength to alter the cosmic environment. 

By definition, this puts the ignition of the "founding stars" well before 560 million years after the Big Bang. Quite how far back in time, though, is uncertain. Perhaps, it was as early as 200 million years. It will be the job of the next generation of observatories like Hubble's successor, the James Webb Space Telescope, to try to find the answer.

JWSTBeing built now: The James Webb telescope will conduct a survey of the first galaxies and their stars
The history of the Universe

Graphic of the history of time
  • Planck's CMB studies indicate the Big Bang was 13.8bn years ago
  • The CMB itself can be thought of as the 'afterglow' of the Big Bang
  • It spreads across the cosmos some 380,000 years after the Big Bang
  • This is when the conditions cool to make neutral hydrogen atoms
  • The period before the first stars is often called the 'Dark Ages'
  • When the first stars ignite, they 'fry' the neutral gas around them
  • These giants also forge the first heavy elements in big explosions
  • 'First Light', or 'Cosmic Renaissance', is a key epoch in history

The new Planck result is contained in a raft of new papers just posted on the Esa website. 

These papers accompany the latest data release from the satellite that can now be used by the wider scientific community, not just collaboration members.
Dr Andrew Jaffe: "The simplest models for inflation are ruled out"
Two years ago, the data dump largely concerned interpretations of the CMB based on its temperature profile. It is the CMB's polarisation features that take centre-stage this time.
It was hoped that Planck might find direct evidence in the CMB's polarisation for inflation - the super-rapid expansion of space thought to have occurred just fractions of a second after the Big Bang. This has not been possible. But all the Planck data - temperature and polarisation information - is consistent with that theory, and the precision measurements mean new, tighter constraints have been put on the likely scale of the inflation signal, which other experiments continue to chase.
What is clear from the Planck investigation is that the simplest models for how the super-rapid expansion might have worked are probably no longer tenable, suggesting some exotic physics will eventually be needed to explain it.
"We're now being pushed into a parameter space we didn't expect to be in," said collaboration scientist Dr Andrew Jaffe from Imperial College, UK. "That's OK. We like interesting physics; that's why we're physicists, so there's no problem with that. It's just we had this naïve expectation that the simplest answer would be right, and sometimes it just isn't."

View Article Here   Read More

Pair of Dwarf Planets May Lurk Beyond Pluto in Our Solar System

At least two unknown dwarf planets may be lurking beyond Pluto, orbiting around the Sun in our own solar system just waiting to be discovered, according to a new study. (Photo : NASA/JPL-Caltech) Excerpt from natureworldnews.comAt least...

View Article Here   Read More

Ripples in Space-Time Could Reveal ‘Strange Stars’

Two Neutron Stars Collide
Scene from a NASA animation showing two neutron stars colliding.

Excerpt from

By looking for ripples in the fabric of space-time, scientists could soon detect "strange stars" — objects made of stuff radically different from the particles that make up ordinary matter, researchers say.

The protons and neutrons that make up the nuclei of atoms are made of more basic particles known as quarks. There are six types, or "flavors," of quarks: up, down, top, bottom, charm and strange. Each proton or neutron is made of three quarks: Each proton is composed of two up quarks and one down quark, and each neutron is made of two down quarks and one up quark.

In theory, matter can be made with other flavors of quarks as well. Since the 1970s, scientists have suggested that particles of "strange matter" known as strangelets — made of equal numbers of up, down and strange quarks — could exist. In principle, strange matter should be heavier and more stable than normal matter, and might even be capable of converting ordinary matter it comes in contact with into strange matter. However, lab experiments have not yet created any strange matter, so its existence remains uncertain. 

One place strange matter could naturally be created is inside neutron stars, the remnants of stars that died in catastrophic explosions known as supernovas. Neutron stars are typically small, with diameters of about 12 miles (19 kilometers) or so, but are so dense that they weigh as much as the sun. A chunk of a neutron star the size of a sugar cube can weigh as much as 100 million tons.

Under the extraordinary force of this extreme weight, some of the up and down quarks that make up neutron stars could get converted into strange quarks, leading to strange stars made of strange matter, researchers say.

A strange star that occasionally spurts out strange matter could quickly convert a neutron star orbiting it in a binary system into a strange star as well. Prior research suggests that a neutron star that receives a seed of strange matter from a companion strange star could transition to a strange star in just 1 millisecond to 1 second.
Now, researchers suggest they could detect strange stars by looking for the stars' gravitational waves — invisible ripples in space-time first proposed by Albert Einstein as part of his theory of general relativity.

Gravitational waves are emitted by accelerating masses. Really big gravitational waves are emitted by really big masses, such as pairs of neutron stars merging with one another.

Pairs of strange stars should give off gravitational waves that are different from those emitted by pairs of "normal" neutron stars because strange stars should be more compact, researchers said. For instance, a neutron star with a mass one-fifth that of the sun should be more than 18 miles (30 km) in diameter, whereas a strange star of the same mass should be a maximum of 6 miles (10 km) wide.
The researchers suggest that events involving strange stars could explain two short gamma-ray bursts — giant explosions lasting less than 2 seconds — seen in deep space in 2005 and 2007. The Laser Interferometer Gravitational-Wave Observatory (LIGO) did not detect gravitational waves from either of these events, dubbed GRB 051103 and GRB 070201.

Neutron star mergers are the leading explanations for short gamma-ray bursts, but LIGO should, in principle, have detected gravitational waves from such mergers. However, if strange stars were involved in both of these events, LIGO would not have been able to detect any gravitational waves they emitted, researchers said. (The more compact a star is within a binary system of two stars, the higher the frequency of the gravitational waves it gives off.)

View Article Here   Read More

MIT Scientists Found an Invisible Force Field Protecting Earth

Excerpt from

The invisible force field seems to be taken from a Star-Trek movie script – it’s invisible, it’s steady, and it doesn’t allow harmful cosmic radiation penetrating into our planet’s atmosphere. Massachusetts Institute of Technology researchers say it was first noticed by two NASA spacecrafts orbiting the Van Allen radiation belt on a 7,200 miles (11,000 km) altitude.

This new invisible force field protecting Earth does a very good job at blocking highly radioactive electrons populating Earth’s upper atmospheric region. NASA said these “ultrarelativistic” electrons were extremely aggressive and they easily circulate in space at speeds very close to the speed of light. They also fry everything on their way from spacecrafts to communication satellites. NASA launched two probe crafts, the Van Allen probes, for the sole purpose of studying these electrons and improving the safety level of their spacecrafts and crew.

NASA says although these electrons are attracted towards Earth by its magnetic field, they cannot get closer than 7,200 miles to it due an invisible shield-like barrier, never detected before. This barrier protects Earth from harmful cosmic radiation and has already done a good job in the past by deflecting several solar blows directed towards Earth. It seems that this mysterious force field operates on low frequency electromagnetism, but its source is still uncertain.

In the end, researchers found out that the barrier was probably generated by the plasmaspheric hiss, a phenomenon occurring in the upper parts of the atmosphere. This plasmaspheric hiss deviates from orbit the fast-moving dangerous particles, and sets them on a parallel plan to one of the Earth’s magnetic field lines, forcing them to fall into the atmosphere, collide with neutrally charged particles, and disappear.

Mary Hudson, professor of physics, said the new NASA observations made over more than two years through its Van Allen probes confirmed the inner barrier’s existence, and brought invaluable new information to the particle acceleration theory.

View Article Here   Read More

Is a trip to the moon in the making?

Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here   Read More

European Space Agency: Rosetta Successfully Lands on Comet ~ First Images Sent to Earth

This photo from Philae shows the surface during the lander's approach  Excerpt from bbc.comA European robot probe has made the first, historic landing on a comet, but its status remains uncertain after harpoons failed to anchor it to the su...

View Article Here   Read More

Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
unless otherwise marked.

Terms of Use | Privacy Policy

Up ↑