The eye can detect light at wavelengths in the visual spectrum. Other wavelengths, such as infrared and ultraviolet, are supposed to be invisible to the human eye, but Washington University scientists have found that under certain conditions, it’s possible for us to see otherwise invisible infrared light. Image: Sara Dickherber

Excerpt from
news.wustl.edu
By Jim Dryden

Any science textbook will tell you we can’t see infrared light. Like X-rays and radio waves, infrared light waves are outside the visual spectrum. 

But an international team of researchers co-led by scientists at Washington University School of in . Louis has found that under certain conditions, the retina can sense infrared light after all. 

Using cells from the retinas of mice and people, and powerful lasers that emit pulses of infrared light, the researchers found that when laser light pulses rapidly, light-sensing cells in the retina sometimes get a double hit of infrared energy. When that happens, the eye is able to detect light that falls outside the visible spectrum.

The findings are . 1 in the Proceedings of the National Academy of Sciences (PNAS) Online Early Edition. The was initiated after scientists on the team reported seeing occasional flashes of green light while working with an infrared laser. Unlike the laser pointers used in lecture halls or as toys, the powerful infrared laser the scientists with emits light waves thought to be invisible to the human eye.

“They were able to see the laser light, which was outside of the normal visible range, and we really wanted to figure out how they were able to sense light that was supposed to be invisible,” said Frans Vinberg, PhD, one of the study’s lead authors and a postdoctoral research associate in the Department of Ophthalmology and Visual Sciences at Washington University. 

Vinberg, Kefalov and their colleagues examined the scientific literature and revisited reports of people seeing infrared light. They repeated previous experiments in which infrared light had been seen, and they analyzed such light from several lasers to see what they could learn about how and why it sometimes is visible.

“We experimented with laser pulses of different durations that delivered the same total number of photons, and we found that the shorter the pulse, the more likely it was a could see it,” Vinberg explained. “Although the length of time between pulses was so short that it couldn’t be by the naked eye, the existence of those pulses was very important in allowing people to see this invisible light.”


Robert Boston

Kefalov’s team developed this adapter that allowed scientists to analyze retinal cells and photopigment molecules as they were exposed to infrared light. The device already is commercially available and in at several vision research centers around the world.

“The visible spectrum waves of light that are 400-720 nanometers long,” explained Kefalov, an associate professor of ophthalmology and visual sciences. “But if a pigment molecule in the retina is hit in rapid succession by a pair of photons that are 1,000 nanometers long, those light particles will deliver the same amount of energy as a single hit from a 500-nanometer photon, which is well within the visible spectrum. That’s how we are able to see it.”
 

Robert Boston

Frans Vinberg, PhD (left), and Vladimir J. Kefalov, PhD, sit in front of a they developed that allows them to detect light responses from retinal cells and photopigment molecules.