Tag: dark energy (page 1 of 3)

Disclosure Process

View Article Here   Read More

New Light on Our Accelerating Universe –"Not as Fast as We Thought"

 A Type Ia supernova, SN1994D, is shown exploding in lower left corner of the image at the top of the page of the galaxy NGC 4526 taken by the Hubble Space Telescope. (High-Z Supernova Search Team, HST, NASA)Excerpt from dailygalaxy.com Cer...

View Article Here   Read More

New research shows Universe expansion pace isn’t as fast as assumed earlier



universe


Excerpt from thewestsidestory.net

The Universe is expanding and any student of astronomy will vouch to this fact. However according to a team of astronomers the acceleration of the universe may not be as quick as it was assumed earlier.

A team of astronomers have discovered that certain types of supernova are more varied than earlier thought of and in the process have led to the biggest mystery of the universe-how fast is the universe expanding after the big bang?

Peter A. Milne of the University of Arizona said, “We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances — and thus when the universe was younger, there are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn’t appear to be the case.”
The discovery throws new light on the currently accepted view of the universe expanding at a faster and faster rate pulled apart by an unknown force called dark energy this observation resulted in 2011 Nobel Prize for Physics.
Milne said, “The idea behind this reasoning, is that type Ia supernovae happen to be the same brightness — they all end up pretty similar when they explode. Once people knew why, they started using them as mileposts for the far side of the universe.The faraway supernovae should be like the ones nearby because they look like them, but because they’re fainter than expected, it led people to conclude they’re farther away than expected, and this in turn has led to the conclusion that the universe is expanding faster than it did in the past.”
The researchers felt that the accelerating universe can be explained on the basis of color difference in between two groups of supernova leaving less acceleration than earlier assumed and in the process will require lesser dark energy.

Milne said, “We’re proposing that our data suggest there might be less dark energy than textbook knowledge, but we can’t put a number on it, until our paper, the two populations of supernovae were treated as the same population. To get that final answer, you need to do all that work again, separately for the red and for the blue population.

Type la supernovae are considered as a benchmark for far away sources of light they do have a fraction of variability which has limited our knowledge of the size of the universe.
The distance of objects with the aid of our binocular vision and the best space-based telescopes and most sophisticated techniques works out in the range of ten or twenty thousand light years. 
However as compared to the vastness of space, this is just pea nuts.
For Distances greater than that it is imperative to compare the absolute and observed brightness of well understood objects and to use the difference to determine the object’s distance.

In astronomy it is difficult to find an object of known brightness since there are examples of both bright and dim stars and galaxies. However there is one event which can be used to work out its absolute brightness. Supernovas are the final stages of a dying star and it explodes with such violence, the flash can be seen across the vast universe.

Type la Supernovae occurs in a binary star system when a white dwarf scoops off mass from its fellow star. This reproducible mechanism gives a well determined brightness and therefore scientists term such Type la supernovae as ‘standard candles’.

Astronomers found that the Type la supernovae is so uniform that it has been designated as cosmic beacons and used to assess the depths of the universe. It is now revealed that they fall into different populations and are not very uniform as previously thought. .

View Article Here   Read More

Our new neighbours: Rare dwarf galaxies found orbiting the Milky Way

The Large and Small Magellanic Clouds, near which the satellites were found. Excerpt from cnet.com Researchers have found rare satellite dwarf galaxies and candidate dwarf galaxies in orbit around our Milky Way, the largest number of such...

View Article Here   Read More

New quantum theory says universe has ‘no end and no beginning’

Excerpt from inhabitat.com

by Cat DiStasio


Until now, scientists have generally agreed that the universe has celebrated about 13.8 billion birthdays, as calculated using Einstein’s theory of general relativity. The ‘Big Bang’ theory (no relation to the popular sitcom) relies on Einstein’s ideas to clearly explain what happens in the moments and years and eons following the expansion of the universe from a point of singularity, but it fails to offer an explanation for what happened prior to that event. For this reason, quantum theorists have long been brainstorming other possible explanations that don’t have such glaring inadequacies.

Ahmed Farag Ali, at Benha University and the Zewail City of Science and Technology (both in Egypt), and Saurya Das, at the University of Lethbridge in Alberta, Canada, believe they have the answer to this quandary, as well as a few others. The two co-authored the paper outlining their new model, in which the universe has no beginning and no end. Their new quantum model, which the scientists refer to as ‘quantum correction terms,’ resolves the problem of the Big Bang singularity.

Das participated in a separate study, with Rajat Bhaduri of McMaster University, Canada, which has takes this model one step further. They theorize a new gravity particle that was present in the universe at all epochs. Further analysis of their model will be the future focus, as they seek to explore the potential to account for dark matter and dark energy.

Essentially, these cosmologists believe their model will take much of what we think about the origin of our universe and throw it out the window.
Via Phys.org

View Article Here   Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here   Read More

White Dwarf Stars to Collide in Catastrophic Supernova

Henize 2-428 nebula
Pictured: An artist's impression of the center of the Henize 2-428 planetary nebula, containing two white dwarf stars. (Photo : ESO/L. CALÇADA)


Excerpt from natureworldnews.com

Reported in the journal Nature, the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Chile was originally studying how some stars produce strangely shaped, asymmetric nebula. They focused on Henize 2-428 and found something they did not expect - not just one star, but two.

"Further observations made with telescopes in the Canary Islands allowed us to determine the orbit of the two stars and deduce both the masses of the two stars and their separation. This was when the biggest surprise was revealed," co-author Romano Corradi, a researcher at the Instituto de Astrofísica de Canarias, said in a press release.

The next shocker was that the two stars were white dwarfs - tiny, extremely dense stars with a total mass about 1.8 times that of the Sun. The fact that there are two stars supports the theory that double central stars may explain the odd shapes of some of these nebulae.

They've also found that the stars orbit every 4 hours and due to the emission of gravitational waves, they are slowly spiraling into one another. Within the next 700 million years, these stars will merge and under the stress of their combined mass, explode in a giant supernova.

"Until now, the formation of supernovae Type Ia by the merging of two white dwarfs was purely theoretical," said co-author David Jones, an ESO Fellow at the time the data were obtained. "The pair of stars in Henize 2-428 is the real thing!"

"It's an extremely enigmatic system," added lead researcher Santander-García. "It will have important repercussions for the study of supernovae Type Ia, which are widely used to measure astronomical distances and were key to the discovery that the expansion of the Universe is accelerating due to dark energy."

View Article Here   Read More

New interactive map of Milky Way lets you see the light (and dust)

"The towers of fiery colors are actually dust in the galaxy and beyond that has been polarized," the JPL says of this recently released map of the universe. It shows light in the 353GHz range, wavelengths longer than our eyes can see. ...

View Article Here   Read More

Are We Closing In On Dark Matter?



kavlifoundation.org

As the search for dark matter intensifies, the Kavli Institute for Cosmological Physics at the University of Chicago and the National Academy of Sciences organized a colloquium that brings together cosmologists, particle physicists and observational astrophysicists – three fields now united in the hunt to determine what is dark matter.

DARK MATTER IS ONE OF THE BIGGEST MYSTERIES IN MODERN PHYSICS. We believe it makes up about 23 percent of the mass-energy content of the universe, even though we don’t know what it is or have yet to directly see it (which is why it’s called “dark”). So how can we detect it and when we do, what will it reveal about the universe?
In mid-October, more than 100 cosmologists, particle physicists and astrophysicists gathered for a meeting called Dark Matter Universe: On the Threshold of Discovery at the National Academy of Sciences’ Beckman Center in Irvine, CA. Their goal: to take stock of the latest theories and findings about dark matter, assess just how close we are to detecting it and spark cross-disciplinary discussions and collaborations aimed at resolving the dark matter puzzle. Following the meeting, The Kavli Foundation met with three leading participants and organizers of the meeting:
  • Michael S. Turner – Rauner Distinguished Service Professor and Director of the Kavli Institute for Cosmological Physics at the University of Chicago.
  • Edward “Rocky” Kolb – Professor in the Department of Astronomy and Astrophysics at the University of Chicago, where he is also a member of the Enrico Fermi Institute and the Kavli Institute for Cosmological Physics.
  • Maria Spiropulu – Professor of Physics at California Institute of Technology who also works on experiments at the Large Hadron Collider, and a former fellow at the Enrico Fermi Institute.

The following is an edited transcription of the discussion.


THE KAVLI FOUNDATION: This meeting brought together theoretical cosmologists, observational astrophysicists and experimental particle physicists. Why this mix of researchers and why now?
MICHAEL TURNER: Figuring out what is dark matter has become a problem that astrophysicists, cosmologists and particle physicists all want to solve, because dark matter is central to our understanding of the universe. We now have a compelling hypothesis, namely that dark matter is comprised of WIMPs (Weakly Interacting Massive Particle), particles that don’t radiate light and interact rarely with ordinary matter. After decades of trying to figure out how to test the idea that dark matter is made up of WIMPs, we have three ways to test this hypothesis. Best of all, all three methods are closing in on being able to either confirm or falsify the WIMP. So the stars have truly aligned.
ROCKY KOLB: The title to this meeting is a great answer to your question. It's “On the Threshold of Discovery,” and it could happen within the next one or two years. It's so important to get the different communities here – experimentalists working at colliders, people analyzing gamma ray data from space, and those involved in direct detection.
Roger Blandford, KIPAC Director
Director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University and the SLAC National Accelerator Laboratory, also helped organize the dark matter meeting in Southern California. Dr. Blandford spoke separately with The Kavli Foundation after the meeting.
TKF: So dark matter is a mystery that everyone wants to solve.

Director of the Kavli Institute for Cosmological Physics (KICP) at the University of Chicago, and a theoretical cosmologist trained in both particle physics and astrophysics. Dr. Turner coined the term “dark energy” and helped establish the interdisciplinary field that combines cosmology and elementary particle physics. His research focuses on the earliest moments of creation, and he has made important contributions to inflationary cosmology, particle dark matter and structure formation, the theory of big bang nucleosynthesis, and the nature of dark energy.A theoretical cosmologist trained in both particle physics and astrophysics, Michael Turner coined the term “dark energy” and helped establish the interdisciplinary field that combines cosmology and elementary particle physics. 

TURNER: Ten years ago, I don't think you would've found astronomers, cosmologists, and particle physicists all agreeing that dark matter was really important. And now, they do. And all of them believe we can solve the problem soon. It's wonderful listening to particle physicists explain the evidence for dark matter, and vice versa –astronomers explaining WIMPs as dark matter. At this meeting nobody said, “Oh, I don't really believe in the evidence. Nor did anyone say, “Yikes – a new form of matter. That’s crazy.”
MARIA SPIROPULU: One important thing we’ve seen at this meeting is a crossing of professional boundaries that have separated researchers in many different fields in the past. These boundaries have been strict. Cosmologists, astrophysicists and particle physicists, however, have now really started talking to one another about dark matter. We’re only beginning and our language – the way speak to each other – is not yet settled so that we completely understand each other; but we are on the threshold of discovering something very important for all of us. This is critical because cosmologists and particle physicists have talked for a long time about how the very big and very small might be linked. And while the particle physicists study the very small with colliders, cosmologists study the galaxies and billions and billions of stars that make up the large-scale structure we see in the universe.
KOLB: Ten years ago, it was “Call me maybe” and now it's …
TURNER: “Let's do lunch.”
SPIROPULU: Yes, it's, “Let's do lunch and talk physics.”
TURNER: I do want to make one point: the convergence of inner space and outer space really started in the 1980s. Back then it began with the origin of the baryon asymmetry, the monopole problem and dark matter to a lesser extent. Particle physicists agreed that dark matter was a real problem but said, “The solution could be astrophysics – faint stars, ‘Jupiters’, black holes and the like.” It’s been a long road to get to where we are now, namely where we all agree that the most compelling solution is particle dark matter. And even today, the different fields are still, in a sense, getting to know one another.
TKF: Let’s cover a few basics. Why is the question of dark matter important?
A professor of Astronomy & Astrophysics at the University Of Chicago,  “Rocky” Kolb is a member of the Enrico Fermi Institute and the Kavli Institute for Cosmological Physics, studies the application of elementary-particle physics to the very early Universe. He is the co-author with Michael Turner of The Early Universe, the standard textbook on particle physics and cosmology.“Rocky” Kolb studies the application of elementary-particle physics to the very early Universe, and  is the co-author with Michael Turner of The Early Universe, the standard textbook on particle physics and cosmology.

KOLB: As cosmologists, one of our jobs is to understand what the universe is made of. To a good approximation, the galaxies and other structures we see in the universe are made predominantly of dark matter. We have concluded this from a tremendous body of evidence, and now we need to discover what exactly is dark matter. The excitement now is that we are closing in on an answer, and only once in the history of humans will someone discover it. There will be some student or postdoc or experimentalist someplace who is going to look in the next 10 years at their data, and of the seven or so billion people in the world that person will discover what galaxies are mostly made of. It's only going to happen once.
TURNER: The dark matter story started with fragmentary evidence discovered by Fritz Zwicky, a Swiss American. He found that there were not enough stars in the galaxy clusters he observed to hold them together. Slowly, more was understood and finally dark matter became a centerpiece of cosmology. And now, we have established that dark matter is about 23 percent of the universe; ordinary matter is only 4½ percent; and dark energy is that other 73 percent – which is an even bigger puzzle.
Nothing in cosmology makes sense without dark matter. We needed it to form galaxies, stars and other structures in the Universe. And so it's absolutely central to cosmology. We also know that none of the particles known to exist can be the dark matter particle. So it has to be a new particle of nature. Remarkably, our most conservative hypothesis right now is that the dark matter is a new form of matter – out there to be discovered and to teach us about particle physics.
A Professor of Physics at the California Institute of Technology (Caltech) in Pasadena, CA. An experimental particle physicist, Spiropulu is interested in the search for dark matter at the Large Hadron Collider at CERN (The European Organization for Nuclear Research), and questions about dark matter that cut across particle physics, astrophysics and cosmology. Spiropulu was previously a senior physics researcher in the Physics Department at CERN from 2004-2012. She was also an Enrico Fermi Fellow from 2001-2004.An experimental particle physicist, Maria Spiropulu is interested in the search for dark matter at the Large Hadron Collider at CERN (The European Organization for Nuclear Research), and questions about dark matter that cut across particle physics, astrophysics and cosmology. 

SPIROPULU: I just want to say one thing. The phenomenon of dark matter was discovered from astronomical observations. We know that galaxies hang together and they don't fly apart, and it’s the same with clusters of galaxies. So we know that we have structure in the universe. Whatever it is that keeps it there, in whatever form it is, we call that dark matter. This is the way I teach it to undergraduates. It’s a fantastical story. It's still a mystery and so it’s “dark,” but the universe and its structures – galaxies and everything else we observe in the macroscopic world – are being held together because of it.
TKF: Dark matter is often described in the media as something that is inferred because of its gravitational effects on ordinary matter. But the case for dark matter is much more expansive than that, as astrophysicist Jeremiah [Jerry] Ostriker from Princeton University said at this meeting.
TURNER: Absolutely. Dark matter is absolutely central to cosmology and the evidence for it comes from many different measurements: the amount of deuterium produced in the big bang, the cosmic microwave background, the formation of structure in the Universe, galaxy rotation curves, gravitational lensing, and on and on. Jerry said that as far as he is concerned, the dark matter problem has been solved. And that’s because this idea that dark matter is just a swarm of particles that are very shy, that rarely interact with ordinary matter and then only weakly, works perfectly. And at the end of his talk, he said, as a kind of footnote: “By the way, I would be interested in knowing what the dark matter is.” This is a testimony to how central dark matter is to cosmology and culturally to how particle physicists and astrophysicists look at dark matter differently. Dr. Gross, the particle physicist, wanted to know what dark matter is made of.
In this image, dark matter and normal matter have been wrenched apart by the tremendous collision of two large clusters of galaxies. (Credit:Chandra/NASA)
What is dark matter? We don’t know, but cosmologists, astrophysicists and experimental particle physicists say they are closing in on an answer. Read a short explanation of what scientists consider the leading candidate, as well as the methods being used to detect dark matter. (Image, dark matter and normal matter have been wrenched apart by the tremendous collision of two large clusters of galaxies. Credit:Chandra/NASA)
TKF: So for Dr. Ostriker, knowing exactly what dark matter is is less important than the work done already – measuring its gravitational influence on ordinary matter, estimating how much of the universe is made from it, and affirming that what we do know about it fits with the standard model of cosmology.
TURNER: That was Jerry’s point, yes. There is five times more dark matter than ordinary matter, and its existence allows us to understand the history of the universe beginning from a formless particle soup until where we are today. If you said, “You no longer have dark matter,” our current cosmological model would collapse. We would be back to square one.
TKF: Dr. Ostriker also argued that we should be open to dark matter being a variety of fundamental particles and not only WIMPs. Other possibilities could be neutrinos and axions.

This composite image shows the galaxy cluster 1E 0657-56, also known as the "bullet cluster", formed after the collision of two large clusters of galaxies -- the most energetic event known in the universe since the Big Bang. The blue clumps show where most of the mass in the clusters is found, using a technique known as gravitational lensing. Most of the matter in the clusters (blue) is clearly separate from the normal matter (pink), giving direct evidence that nearly all of the matter in the clusters is dark. This result cannot be explained by modifying the laws of gravity. (Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)This composite image shows the galaxy cluster 1E 0657-56, also known as the "bullet cluster", formed after the collision of two large clusters of galaxies -- the most energetic event known in the universe since the Big Bang. The blue clumps show where most of the mass in the clusters is found, using a technique known as gravitational lensing. Most of the matter in the clusters (blue) is clearly separate from the normal matter (pink), giving direct evidence that nearly all of the matter in the clusters is dark. This result cannot be explained by modifying the laws of gravity. (Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

TURNER: Because he doesn't care what it is. They all work equally well. The flip side is that cosmology tells us little about dark matter except it is cold.
TKF: Do they all work equally well for each of you?
KOLB: Well, for cold dark matter – which is made from particles that move slowly compared with the speed of light, and is the kind needed for forming galaxies and galaxy clusters – they all work equally well. The thing about the WIMP, as opposed to some of these other candidate particles, is that it's a very compelling possibility we can test right now. So we don't have to wait for the next 30 years or the next century, as we might if we were trying to detect another type of hypothesized particle. We don't have to build an accelerator larger than LHC.
It's a magical moment when astronomers, astrophysicists, string theorists, particle experimentalists and cosmologists get together because they all have a common purpose. There is a common problem that excites them.
TKF: What makes you most optimistic that we’re on the threshold of discovery?
KOLB: First of all, the hypothesis that dark matter is made up of WIMPs – and that it was produced by normal particles, say quarks, in the early universe – is an amazing achievement all by itself. Independent of a lot of the details of what goes on there and exactly how that happens, we expect that you should be able to reverse things and produce WIMPs in particle accelerators. We also expect they should be annihilating today in the galaxy, which we should be able to detect indirectly. Now, it's another issue who will be the first to find WIMPs. It's possible that it will be another 30 years before we do that, but we should be able to make a detection – whether it’s direct or indirect.
SPIROPULU: With the Large Hadron Collider, and before that the Tevatron collider, we have been chasing and targeting the dark matter candidate. For us, the optimism is because the LHC is working and we’re collecting a lot of data. In the standard model of particle physics, when we enlarge it to help explain how the universe began and evolved, we have a story that is a mathematical story. It’s very good at describing how we can have dark matter. And if the mathematics accurately describes reality, then the LHC is now achieving the energies that are needed to produce dark matter particles.
Getting to these high energies is critical, and we are even going to higher energies. When we were building the standard model of particle physics, we kept saying that the next particle discovery that we predicted was “right around the corner.” In other words, we were not, and we are not, flying in the dark. We are guided by a huge amount of data and knowledge, and while you might think there are infinite possibilities of what can happen, the data actually points you to something that is more probable. For example, we have found the Higgs-like particle, but that was predicted. So the next big step for this edifice of knowledge is to find something that will look like supersymmetry – a hypothesis that, if true, offers a perfect candidate for dark matter. We call it a miracle, because the mathematics works. But the way nature works, in the end, is what you see in the data. So if we find it, there is no miracle.
"Cosmologists, astrophysicists and particle physicists have now really started talking to one another about dark matter. We’re only beginning and our language – the way speak to each other – is not yet settled... but we are on the threshold of discovering something very important for all of us. – Maria Spiropulu
TURNER: These dark matter particles, or WIMPs, don’t interact with ordinary matter often. It's taken 25 years to improve the sensitivity of our detectors by a factor of a million, and now they have a good shot at detecting the dark matter particles. Because of the technological developments, we think we are on the cusp of a direct detection.
Likewise for indirect detection. We now have instruments like the Fermi satellite (the Fermi Gamma-ray Space Telescope) and the IceCube detector (the IceCube Neutrino Observatory at the South Pole) that can detect the ordinary particles (positrons, gamma rays or neutrinos) that are produced when dark matter particles annihilate, indirectly allowing dark matter to be detected. IceCube is big enough to detect neutrinos that are produced by dark matter annihilations in the sun.
TKF: A few people over the past two days have said the dark matter particle might not be detectable.
TURNER: For many of us, for 20 to 30 years, this idea that dark matter is part of a unified theory has been our Holy Grail and has led to the WIMP hypothesis and the belief that the dark matter particle is detectable. But there’s a new generation of physicists that is saying, “Well, there's an alternative view. Dark matter is actually just the tip of an iceberg of another world that is unrelated to our world. And I cannot even tell you about that world. There are no rules for that other world, at least that we know of yet.” Sadly, this point of view could be correct and might mean the solution to the dark matter problem is still very far away. That is what led Jerry to say that discovering what dark matter actually is could be 100 years away.
Hubble’s view of massive galaxy cluster MACS J0717.5+3745.  Studying the distorting effects of gravity on light from background galaxies, astronomers uncovered the presence of a filament of dark matter extending from the core of the cluster.  The location of the dark matter is revealed in a map of the mass in the cluster and surrounding region, shown here in blue. Click to see video. (Credit: NASA, ESA, Harald Ebeling (University of Hawaii at Manoa) & Jean-Paul Kneib (LAM))Hubble’s view of massive galaxy cluster MACS J0717.5+3745. Studying the distorting effects of gravity on light from background galaxies, astronomers uncovered the presence of a filament of dark matter extending from the core of the cluster. The location of the dark matter is revealed in a map of the mass in the cluster and surrounding region, shown here in blue. (Credit: NASA, ESA, Harald Ebeling (University of Hawaii at Manoa) & Jean-Paul Kneib (LAM))

TKF: Michael Witherell, Professor of Physics at the University of California, Santa Barbara, also said that nature doesn't guarantee an observation.
TURNER: Also true. But we have the WIMP hypothesis and it is falsifiable. And there's a good chance it's true. A “good chance” in this business means 10 percent or 20 percent. But when you’re trying to solve a problem of this magnitude, if you have a 10-20 percent chance, I say let's double down on that.
TKF: When do you predict we’ll detect WIMPs?
KOLB: It's easy to say, “A decade.” LHC is turning on now. It'll be another year or so before they are at full energy, and they may run a couple of years to accumulate data. Meanwhile, the Fermi satellite is in space making observations. And then we have experiments underground: a detection may come with Xenon100, one dark matter experiment now underway in central Italy, or some successor to Xenon100.
TKF: And programs like LUX, the Large Underground Xenon dark matter experiment in South Dakota, are just coming online.
KOLB: In ten years, if there is no indication of supersymmetry or a WIMP – either from direct detection or indirect detection searches – then there is going to be a sea change. Now, there is not going to be one experiment announcement that says, “OK, let's look at something else.” But if ten years from now there is no evidence, then we are going to other possibilities. You could not have said that ten years ago, or even five years ago. Today, I think you can say that.
TKF: Because we have so much work behind us and have already eliminated numerous possibilities.
KOLB: As in Ghostbusters, we have the tools. We have the talent.
SPIROPULU: I think it's fair to say the discovery is “around the corner.” If we continue with exclusions, then we have to come up with better ideas. We are doing all this because we want to characterize dark matter. We are not just saying, “It is dark matter.” We don't want to just say, “The universe is.” We want to know exactly what it is made of. We want to know the dynamics and what it involves. A lot of work is ahead of us. Somebody said that it's not going to be as easy as finding the Higgs. Well, finding the Higgs was extremely nontrivial. Of course, once we find it, it goes in the pool of knowledge and then you say, “Well, it was easy.”
"[W]e need to discover what exactly is dark matter. The excitement now is that we are closing in on an answer, and only once in the history of humans will someone discover it." – Rocky Kolb
TKF: Painting a picture for the general public about how incredible it would be to discover a WIMP is challenging. How do you convey just how sensitive this measurement would be?
TURNER: I keep saying these particles are very shy. Here’s one way to think about this: if you had 100 kilograms of material, one of these shy particles – one of these WIMPS – would interact with that 100 kg once in a year or even less often. So you really have to build very sensitive detectors. Because of the cosmic rays and other particles that light up your detector and obscure the WIMP signal you’re looking for, you have to put WIMP detectors underground. And even underground you still get natural radioactivity clouding your signal, so you have to discriminate against that as well.
Now, we also expect there’s a seasonal modulation in the dark matter signal as the Earth orbits the sun through the sea of dark matter particles that permeate space. The modulation signal is expected to be only a few percent of the rare, dark-matter signal I talked about a minute ago. We do have the equipment in place to make these detections, but we just need Nature to cooperate.
KOLB: It's a fantastical story. One hundred years ago, if I told you that we are surrounded by these invisible particles and they’re passing through us – you don't feel them yet they form the entire structure of the universe – you would have locked me up.
TKF: Do any of you expect that learning about dark matter will help us also learn about the other big mystery in cosmology – dark energy?
KOLB: Possibly nothing. It depends on what the answer will be. It is possible it won't shed any light on the nature of dark energy.
TURNER: There are two views. One is a conservative view, which is that dark matter is just made up of particles that don't give off light. It's just particles that happened to be more important than the stuff that we are made out of, which we only discovered in the past 70 years. And dark energy is a new problem that is unrelated.
TKF: And the only thing they share at this point is being unknown?
This is one of the most detailed maps of dark matter in our universe ever created. The location of the dark matter (tinted blue) was inferred through observations of magnified and distorted distant galaxies seen in this picture. (Credit: NASA/JPL-Caltech/ESA/Institute of Astrophysics of Andalusia, University of Basque Country/JHU)This is one of the most detailed maps of dark matter in our universe ever created. The location of the dark matter (tinted blue) was inferred through observations of magnified and distorted distant galaxies seen in this picture. (Credit: NASA/JPL-Caltech/ESA/Institute of Astrophysics of Andalusia, University of Basque Country/JHU)


TURNER: That's right. The conservative point of view is that dark energy is unrelated to dark matter. Recall, dark energy is the stuff that is causing the universe to speed up. This is the simple view where we are solving problems one at a time.
A more radical view which we heard about at this meeting from Erik Verlinde (from the University of Amsterdam) is, “You know, guess what? Don't you guys get it? The two of them are related. It has nothing to do with particles. It's something much, much bigger. The two are related and are pointing to a much richer explanation. You are trying to explain things in a simple-minded way: dark matter particles and dark energy. Just like Ptolemy’s epicycles (the epicycles of Claudius Ptolemy, a Greek astronomer who lived in Alexandria, Egypt under Roman rule, is a false construction of an Earth-centered universe, specifically describing the observed retrograde motion of planets), a desperate attempt to make a wrong hypothesis work.
And so those are the two extremes. One is that we are just about to solve dark matter and then we will go on to dark energy and they're probably not related; the other is that together, they make this big flashing sign: You guys really need to sit down and reconsider the whole framework.
SPIROPULU: I think it's worth noting that the dark sector (i.e. dark matter and dark energy) has to do with gravity. They are linked via gravity. Gravity is a force that in particle physics we have not been able to put together with the rest of the forces. Somehow, if you could stand outside the universe – that's an absurd statement, of course – but stand outside it and see how everything relates, you could say something about the dark sector and gravity.
TURNER: You're right that gravity could be the connector, because in cosmology and astrophysics gravity is the most important force. In particle physics, it's the least important force. Consequently particle physicists are just getting around to worrying about it, and in cosmology we mostly worry about gravity. And so now, we have come together because of a common interest in gravity – gravity revealed to us through dark matter and dark energy.
SPIROPULU: Here we are, with dark matter between us. It's a beautiful story of how we are trying to solve the problems, the challenges of characterizing our physical world.
KOLB: Dark matter holds together the galaxies. It holds together cosmologists and particle physicists.
TURNER: We know that Einstein didn't get the last word on gravity, because his theory doesn't have quantum mechanics in it. And so any problem that involves gravity, you are thinking, nervously and excitedly, that this could be the clue to the grander theory of gravity.
KOLB: I don't think the general public appreciates that we would love to find something wrong with what we think about the universe, about the laws of nature. And that’s because it points the way toward new discoveries. I don't think most people work that way, thinking that, “Boy, I would love to be shown that I’m wrong about something that I really thought was true for 30 years or 100 years.”
"[T]he universe is vast....but we are at a point in time where we really think we understand it and that we can identify what dark matter is. ...This is the time to be a dark cosmologist." – Michael Turner
TURNER: We want new puzzles.
SPIROPULU: Always. And I have to say that in particle physics, there is a list of experiments and projects that have been built in the past 30 years that did not find what they were built for. None. They found other things, other important things. It's incredible. One example of this is the Hubble Space Telescope, which has revealed more about the universe than we ever could have imagined when it was conceived. The series of deep field images of the very distant universe, which has given us glimpses of the earliest galaxies, is just one example of this. So, when you write a proposal for something and you say what you are building it for, and you get the money and you go and build it and you find something completely unexpected – Wow. Our physical world is surprising. And it's very surprising that we can get it, even at the level we do. Or that we can do the experiments that we do.
TURNER: I think the universe is vast. It's often beyond the reach of our instruments and our minds, but we are at a point in time here where we really think we understand it and that we can identify what dark matter is. We have an accounting of the universe and a compelling hypothesis for dark matter. It is not unexpected that the younger generation of scientists wants a more radical solution to dark matter. The older generation developed the WIMP hypothesis, and this is our solution and we want to see it come true. The younger generation wants the excitement of solving a problem.
TKF: Would any of you trade this point in time with another in the history of physics?
KOLB: No, no. For dark matter, I think this is the time. I can't see everything converging at another time like it is now.
TURNER: This is the time to be a dark cosmologist.

View Article Here   Read More

A message to the Universe from The Pleiadian Ring of 500 – Affiliates of The Pleiadian Council of Light

{mainvote}

The following is a telepathic message I received this morning from my Pleiadian family, also known as “The Ring of 500″ who, I am told, are affiliates of The Pleiadian Council of Light. Please read with heartfelt discernme...

View Article Here   Read More

Cosmic Awareness Newsletter 2012-01

{mainvote}

7 March 2012

Channeler: Will Berlinghof

Well...Anasazi1 just made me realize that there was no Cosmic Awareness message posted here recently,so here's the most recent one avaiable right one,as the CAC newsletter is for mem...

View Article Here   Read More

A MESSAGE from the Pleiadian Council of Light

{mainvote}

28 February 2012

Message to the Universe from The Pleiadian ring of 500 affiliated of the Pleiadian Council of Light

The following is a telepathic message I received this morning from my Pleiadian family, also known as “...

View Article Here   Read More

Denise Le Fay: 2012 Ascension Symptoms & the Global Sound Phenomenon

{mainvote}

by Denise

I received an email the other day from one of my readers (who wishes to remain anonymous) asking if I'd give my impressions on the global "strange sounds" phenomenon that many people have heard and recorded...

View Article Here   Read More
Older posts




Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑