Tag: increases (page 2 of 4)

Australia Prime Minister Advisor Says Global Warming is a United Nations Hoax to Create New World Order


Maurice Newman, the Australian PM's business adviser

rt.com

The Australian prime minister’s chief business adviser says that climate change is a ruse led by the United Nations to create a new world order under the agency’s control. The statement coincided with a visit from the UN’s top climate negotiator.

Maurice Newman, chairman of Prime Minister Tony Abbott’s business advisory council, said the UN is using false models which show sustained temperature increases because it wants to end democracy and impose authoritarian rule.

“It’s a well-kept secret, but 95 percent of the climate models we are told prove the link between human CO2 emissions and catastrophic global warming have been found, after nearly two decades of temperature stasis, to be in error,” he wrote in an opinion piece published in The Australian newspaper on Friday, without providing evidence.


Australia Prime Minister Tony Abbott

“The real agenda is concentrated political authority. Global warming is the hook,” he said, adding that the UN is against capitalism and freedom and wants to create a “new world order.” 

The adviser’s inflammatory comments coincided with a visit from UN climate chief Christiana Figueres. 

According to Newman, Figueres is “on record saying democracy is a poor political system for fighting global warming. Communist China, she says, is the best model.”

Figueres was in Australia to discuss practical climate change action, urging the country to move away from heavily polluting coal production. She also urged Australia to play a leading role at the climate summit in Paris in December. 

But that call is unlikely to be heeded. During November’s G20 meeting in Brisbane, Abbott warned that the Paris summit would fail if world leaders decided prioritize the cutting of carbon emissions over economic growth. 

Abbott, who called the science behind climate change “crap” in 2009, also repealed a tax on carbon pricing and abolished the independent Climate Commission advisory body in Australia.
The prime minister has been reluctant to take part in climate change politics, trying but failing to keep it off the agenda at last year’s G20 summit. 

Both Abbott’s office and the United Nations have so far declined to comment on Newman’s statements. 

A well-known climate change skeptic, Newman has made similar provocative comments in the past, calling the notion a “myth” and a “delusion.”

In February, he criticized renewable energy policies. Citing British charity Age UK, he stated that elderly citizens in Britain often die of “winter deaths” because they can’t afford power. He blamed renewable energy policies which drive up the price of energy. 

However, when asked about his claim by The Guardian, the charity sent back a statement which referenced high energy costs, but failed to mention anything about renewable energy. 

Just a few months earlier, in November 2014, Newman cited a Scottish government-commissioned study which allegedly said that for every job in the renewable sector, 3.7 jobs were lost elsewhere. 
However, the report itself made no mention that it was commissioned by the government. In fact, the government called the study “misleading,” adding that the industry would actually have the opposite effect on jobs. 

According to the UN’s Intergovernmental Panel on Climate Change, the global mean temperature could rise by up to 4.8° Celsius (40.6° Fahrenheit) this century alone. The prediction is seen as a recipe for droughts, floods and rising seas.

View Article Here   Read More

Australia Prime Minister Advisor Says Global Warming is a United Nations Hoax to Create New World Order


Maurice Newman, the Australian PM's business adviser

rt.com

The Australian prime minister’s chief business adviser says that climate change is a ruse led by the United Nations to create a new world order under the agency’s control. The statement coincided with a visit from the UN’s top climate negotiator.

Maurice Newman, chairman of Prime Minister Tony Abbott’s business advisory council, said the UN is using false models which show sustained temperature increases because it wants to end democracy and impose authoritarian rule.

“It’s a well-kept secret, but 95 percent of the climate models we are told prove the link between human CO2 emissions and catastrophic global warming have been found, after nearly two decades of temperature stasis, to be in error,” he wrote in an opinion piece published in The Australian newspaper on Friday, without providing evidence.


Australia Prime Minister Tony Abbott

“The real agenda is concentrated political authority. Global warming is the hook,” he said, adding that the UN is against capitalism and freedom and wants to create a “new world order.” 

The adviser’s inflammatory comments coincided with a visit from UN climate chief Christiana Figueres. 

According to Newman, Figueres is “on record saying democracy is a poor political system for fighting global warming. Communist China, she says, is the best model.”

Figueres was in Australia to discuss practical climate change action, urging the country to move away from heavily polluting coal production. She also urged Australia to play a leading role at the climate summit in Paris in December. 

But that call is unlikely to be heeded. During November’s G20 meeting in Brisbane, Abbott warned that the Paris summit would fail if world leaders decided prioritize the cutting of carbon emissions over economic growth. 

Abbott, who called the science behind climate change “crap” in 2009, also repealed a tax on carbon pricing and abolished the independent Climate Commission advisory body in Australia.
The prime minister has been reluctant to take part in climate change politics, trying but failing to keep it off the agenda at last year’s G20 summit. 

Both Abbott’s office and the United Nations have so far declined to comment on Newman’s statements. 

A well-known climate change skeptic, Newman has made similar provocative comments in the past, calling the notion a “myth” and a “delusion.”

In February, he criticized renewable energy policies. Citing British charity Age UK, he stated that elderly citizens in Britain often die of “winter deaths” because they can’t afford power. He blamed renewable energy policies which drive up the price of energy. 

However, when asked about his claim by The Guardian, the charity sent back a statement which referenced high energy costs, but failed to mention anything about renewable energy. 

Just a few months earlier, in November 2014, Newman cited a Scottish government-commissioned study which allegedly said that for every job in the renewable sector, 3.7 jobs were lost elsewhere. 
However, the report itself made no mention that it was commissioned by the government. In fact, the government called the study “misleading,” adding that the industry would actually have the opposite effect on jobs. 

According to the UN’s Intergovernmental Panel on Climate Change, the global mean temperature could rise by up to 4.8° Celsius (40.6° Fahrenheit) this century alone. The prediction is seen as a recipe for droughts, floods and rising seas.

View Article Here   Read More

11 Common Symptoms of the Global Depopulation Slow Kill

Sigmund Fraud, Staff Writer“Maintain humanity under 500,000,000 in perpetual balance with nature.” – The Georgia GuidestonesThe full-spectrum global attack on human health is quite obvious to see for anyone who is paying attention and in search of wellness. So many of the factors that are negatively influencing public heath could easily be prevented or removed from society, yet the decisions of the ruling class continue to ensure that our food supply [...]

View Article Here   Read More

Mysterious Glow Detected At Center Of Milky Way Galaxy

In this image, the magenta color indicates the mysterious glow detected by NASA's NuSTAR space telescope.Excerpt from huffingtonpost.com A mysterious glow has been observed at the center of the Milky Way, and scientists are struggling to figure o...

View Article Here   Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here   Read More

Seattle Company Raises Minimum Wage to $70,000 a Year For All Employees!






Excerpt from nytimes.com

The idea began percolating, said Dan Price, the founder of Gravity Payments, after he read an article on happiness. It showed that, for people who earn less than about $70,000, extra money makes a big difference in their lives.

His idea bubbled into reality on Monday afternoon, when Mr. Price surprised his 120-person staff by announcing that he planned over the next three years to raise the salary of even the lowest-paid clerk, customer service representative and salesman to a minimum of $70,000.

“Is anyone else freaking out right now?” Mr. Price asked after the clapping and whooping died down into a few moments of stunned silence. “I’m kind of freaking out.”

If it’s a publicity stunt, it’s a costly one. Mr. Price, who started the Seattle-based credit-card payment processing firm in 2004 at the age of 19, said he would pay for the wage increases by cutting his own salary from nearly $1 million to $70,000 and using 75 to 80 percent of the company’s anticipated $2.2 million in profit this year.

Employees reacting to the news. The average salary at Gravity Payments had been $48,000 year. Credit Matthew Ryan Williams for The New York Times

The paychecks of about 70 employees will grow, with 30 ultimately doubling their salaries, according to Ryan Pirkle, a company spokesman. The average salary at Gravity is $48,000 year.

Mr. Price’s small, privately owned company is by no means a bellwether, but his unusual proposal does speak to an economic issue that has captured national attention: The disparity between the soaring pay of chief executives and that of their employees.

The United States has one of the world’s largest pay gaps, with chief executives earning nearly 300 times what the average worker makes, according to some economists’ estimates. That is much higher than the 20-to-1 ratio recommended by Gilded Age magnates like J. Pierpont Morgan and the 20th century management visionary Peter Drucker.

“The market rate for me as a C.E.O. compared to a regular person is ridiculous, it’s absurd,” said Mr. Price, who said his main extravagances were snowboarding and picking up the bar bill. He drives a 12-year-old Audi, which he received in a barter for service from the local dealer.

“As much as I’m a capitalist, there is nothing in the market that is making me do it,” he said, referring to paying wages that make it possible for his employees to go after the American dream, buy a house and pay for their children’s education.

Under a financial overhaul passed by Congress in 2010, the Securities and Exchange Commission was supposed to require all publicly held companies to disclose the ratio of C.E.O. pay to the median pay of all other employees, but it has so far failed to put it in effect. Corporate executives have vigorously opposed the idea, complaining it would be cumbersome and costly to implement.

Mr. Price started the company, which processed $6.5 billion in transactions for more than 12,000 businesses last year, in his dorm room at Seattle Pacific University with seed money from his older brother. The idea struck him a few years earlier when he was playing in a rock band at a local coffee shop. The owner started having trouble with the company that was processing credit card payments and felt ground down by the large fees charged.

When Mr. Price looked into it for her, he realized he could do it more cheaply and efficiently with better customer service.

The entrepreneurial spirit was omnipresent where he grew up in rural southwestern Idaho, where his family lived 30 miles from the closest grocery store and he was home-schooled until the age of 12. When one of Mr. Price’s four brothers started a make-your-own baseball card business, 9-year-old Dan went on a local radio station to make a pitch: “Hi. I’m Dan Price. I’d like to tell you about my brother’s business, Personality Plus.”

His father, Ron Price, is a consultant and motivational speaker who has written his own book on business leadership.

Dan Price came close to closing up shop himself in 2008 when the recession sent two of his biggest clients into bankruptcy, eliminating 20 percent of his revenue in the space of two weeks. He said the firm managed to struggle through without layoffs or raising prices. His staff, most of them young, stuck with him.

Aryn Higgins at work at Gravity Payments in Seattle. She and her co-workers are going to receive significant pay raises. Credit Matthew Ryan Williams for The New York Times

Mr. Price said he wasn’t seeking to score political points with his plan. From his friends, he heard stories of how tough it was to make ends meet even on salaries that were still well-above the federal minimum of $7.25 an hour.

“They were walking me through the math of making 40 grand a year,” he said, then describing a surprise rent increase or nagging credit card debt.

“I hear that every single week,” he added. “That just eats at me inside.”

Mr. Price said he wanted to do something to address the issue of inequality, although his proposal “made me really nervous” because he wanted to do it without raising prices for his customers or cutting back on service.

Of all the social issues that he felt he was in a position to do something about as a business leader, “that one seemed like a more worthy issue to go after.”

He said he planned to keep his own salary low until the company earned back the profit it had before the new wage scale went into effect.

Hayley Vogt, a 24-year-old communications coordinator at Gravity who earns $45,000, said, “I’m completely blown away right now.” She said she has worried about covering rent increases and a recent emergency room bill.

“Everyone is talking about this $15 minimum wage in Seattle and it’s nice to work someplace where someone is actually doing something about it and not just talking about it,” she said.

The happiness research behind Mr. Price’s announcement on Monday came from Angus Deaton and Daniel Kahneman, a Nobel Prize-winning psychologist. They found that what they called emotional well-being — defined as “the emotional quality of an individual’s everyday experience, the frequency and intensity of experiences of joy, stress, sadness, anger, and affection that make one’s life pleasant or unpleasant” — rises with income, but only to a point. And that point turns out to be about $75,000 a year.

Of course, money above that level brings pleasures — there’s no denying the delights of a Caribbean cruise or a pair of diamond earrings — but no further gains on the emotional well-being scale.
As Mr. Kahneman has explained it, income above the threshold doesn’t buy happiness, but a lack of money can deprive you of it.
Phillip Akhavan, 29, earns $43,000 working on the company’s merchant relations team. “My jaw just dropped,” he said. “This is going to make a difference to everyone around me.”

At that moment, no Princeton researchers were needed to figure out he was feeling very happy.

View Article Here   Read More

The Story of Human Evolution Now Challenged



Story of Human Evolution Challenged


Excerpt from newhistorian.com

The history of the evolution of early humans has been challenged.
Until now, one of the most dominant theories about our evolution claimed that our genus, Homo, had evolved from smaller early humans becoming taller, heavier and longer-legged. This process eventually resulted in Homo erectus, which was able to migrate out of Africa and colonise Eurasia.

Whilst we know that small-bodied H. erectus, averaging less than five feet tall and weighing under 50 kilograms, were living in southern Europe by 1.77 million years ago, the origin of the larger body size associated with modern humans has been elusive.

The paucity of knowledge about the origins of larger members of the Homo genus is primarily a result of a lack of evidence. Previous estimates of body size had been based on well-preserved specimens which were easy to assign a species to. Since these samples are rare and disparate in terms of both space and time, little is known about geographical and chronological variation in the body sizes of the early Homo.

A joint study between the Universities of Cambridge and Tübingen has shown that increases in body size occurred thousands of years after H. erectus left Africa; this growth in Homo body sizes primarily took place in the Koobi Fora region in modern Kenya.

“The evolution of larger bodies and longer legs can thus no longer be assumed to be the main driving factor behind the earliest excursions of our genus to Eurasia,” said Manuel Will, co-author of the study which has been published in the Journal of Human Evolution.

By using tiny fragments of fossil, the team were able to estimate our earliest ancestors’ height and body mass. Their findings, rather surprisingly, indicate a huge diversity in body size; this is particularly surprising as the wide variation we see in humans today was thought to be a relatively recent development.

“If someone asked you ‘are modern humans 6 foot tall and 70kg?’ you’d say ‘well some are, but many people aren’t,’ and what we’re starting to show is that this diversification happened really early in human evolution,” said Dr Jay Stock, co-author of the study.

Stock and Will are the first scientists in 20 years to compare the body size of humans from between 2.5 and 1.5 million years ago. They are also the first to use fragmentary fossils – many as small as toes, none longer than 5cm – to estimate body sizes.

By comparing measurements of fossils from sites in Kenya, Tanzania, South Africa and Georgia, the researchers have revealed substantial regional variation in the size of early humans. Groups who lived in South African caves, for example, were 4.8 feet tall on average. Some of the skeletons found in Kenya’s Koobi Fora region would have stood nearly 6 feet tall, a height comparable to the average height of modern British males.
“Basically every textbook on human evolution gives the perspective that one lineage of humans evolved larger bodies before spreading beyond Africa. But the evidence for this story about our origins and the dispersal out of Africa just no longer really fits,” said Stock.

It appears that Stock and Will have rewritten the history of the development of early humans; diversity has deep roots amongst the Homo genus.

View Article Here   Read More

What happens to your body when you give up sugar?





Excerpt from independent.co.uk
By Jordan Gaines Lewis


In neuroscience, food is something we call a “natural reward.” In order for us to survive as a species, things like eating, having sex and nurturing others must be pleasurable to the brain so that these behaviours are reinforced and repeated.
Evolution has resulted in the mesolimbic pathway, a brain system that deciphers these natural rewards for us. When we do something pleasurable, a bundle of neurons called the ventral tegmental area uses the neurotransmitter dopamine to signal to a part of the brain called the nucleus accumbens. The connection between the nucleus accumbens and our prefrontal cortex dictates our motor movement, such as deciding whether or not to taking another bite of that delicious chocolate cake. The prefrontal cortex also activates hormones that tell our body: “Hey, this cake is really good. And I’m going to remember that for the future.”
Not all foods are equally rewarding, of course. Most of us prefer sweets over sour and bitter foods because, evolutionarily, our mesolimbic pathway reinforces that sweet things provide a healthy source of carbohydrates for our bodies. When our ancestors went scavenging for berries, for example, sour meant “not yet ripe,” while bitter meant “alert – poison!”
Fruit is one thing, but modern diets have taken on a life of their own. A decade ago, it was estimated that the average American consumed 22 teaspoons of added sugar per day, amounting to an extra 350 calories; it may well have risen since then. A few months ago, one expert suggested that the average Briton consumes 238 teaspoons of sugar each week.
Today, with convenience more important than ever in our food selections, it’s almost impossible to come across processed and prepared foods that don’t have added sugars for flavour, preservation, or both.
These added sugars are sneaky – and unbeknown to many of us, we’ve become hooked. In ways that drugs of abuse – such as nicotine, cocaine and heroin – hijack the brain’s reward pathway and make users dependent, increasing neuro-chemical and behavioural evidence suggests that sugar is addictive in the same way, too.

Sugar addiction is real

Anyone who knows me also knows that I have a huge sweet tooth. I always have. My friend and fellow graduate student Andrew is equally afflicted, and living in Hershey, Pennsylvania – the “Chocolate Capital of the World” – doesn’t help either of us. But Andrew is braver than I am. Last year, he gave up sweets for Lent. “The first few days are a little rough,” Andrew told me. “It almost feels like you’re detoxing from drugs. I found myself eating a lot of carbs to compensate for the lack of sugar.”
There are four major components of addiction: bingeing, withdrawal, craving, and cross-sensitisation (the notion that one addictive substance predisposes someone to becoming addicted to another). All of these components have been observed in animal models of addiction – for sugar, as well as drugs of abuse.
A typical experiment goes like this: rats are deprived of food for 12 hours each day, then given 12 hours of access to a sugary solution and regular chow. After a month of following this daily pattern, rats display behaviours similar to those on drugs of abuse. They’ll binge on the sugar solution in a short period of time, much more than their regular food. They also show signs of anxiety and depression during the food deprivation period. Many sugar-treated rats who are later exposed to drugs, such as cocaine and opiates, demonstrate dependent behaviours towards the drugs compared to rats who did not consume sugar beforehand.
Like drugs, sugar spikes dopamine release in the nucleus accumbens. Over the long term, regular sugar consumption actually changes the gene expression and availability of dopamine receptors in both the midbrain and frontal cortex. Specifically, sugar increases the concentration of a type of excitatory receptor called D1, but decreases another receptor type called D2, which is inhibitory. Regular sugar consumption also inhibits the action of the dopamine transporter, a protein which pumps dopamine out of the synapse and back into the neuron after firing.
In short, this means that repeated access to sugar over time leads to prolonged dopamine signalling, greater excitation of the brain’s reward pathways and a need for even more sugar to activate all of the midbrain dopamine receptors like before. The brain becomes tolerant to sugar – and more is needed to attain the same “sugar high.”

Sugar withdrawal is also real

Although these studies were conducted in rodents, it’s not far-fetched to say that the same primitive processes are occurring in the human brain, too. “The cravings never stopped, [but that was] probably psychological,” Andrew told me. “But it got easier after the first week or so.”
In a 2002 study by Carlo Colantuoni and colleagues of Princeton University, rats who had undergone a typical sugar dependence protocol then underwent “sugar withdrawal.” This was facilitated by either food deprivation or treatment with naloxone, a drug used for treating opiate addiction which binds to receptors in the brain’s reward system. Both withdrawal methods led to physical problems, including teeth chattering, paw tremors, and head shaking. Naloxone treatment also appeared to make the rats more anxious, as they spent less time on an elevated apparatus that lacked walls on either side.
Similar withdrawal experiments by others also report behaviour similar to depression in tasks such as the forced swim test. Rats in sugar withdrawal are more likely to show passive behaviours (like floating) than active behaviours (like trying to escape) when placed in water, suggesting feelings of helplessness.
A new study published by Victor Mangabeira and colleagues in this month’s Physiology & Behavior reports that sugar withdrawal is also linked to impulsive behaviour. Initially, rats were trained to receive water by pushing a lever. After training, the animals returned to their home cages and had access to a sugar solution and water, or just water alone. After 30 days, when rats were again given the opportunity to press a lever for water, those who had become dependent on sugar pressed the lever significantly more times than control animals, suggesting impulsive behaviour.
These are extreme experiments, of course. We humans aren’t depriving ourselves of food for 12 hours and then allowing ourselves to binge on soda and doughnuts at the end of the day. But these rodent studies certainly give us insight into the neuro-chemical underpinnings of sugar dependence, withdrawal, and behaviour.
Through decades of diet programmes and best-selling books, we’ve toyed with the notion of “sugar addiction” for a long time. There are accounts of those in “sugar withdrawal” describing food cravings, which can trigger relapse and impulsive eating. There are also countless articles and books about the boundless energy and new-found happiness in those who have sworn off sugar for good. But despite the ubiquity of sugar in our diets, the notion of sugar addiction is still a rather taboo topic.
Are you still motivated to give up sugar? You might wonder how long it will take until you’re free of cravings and side-effects, but there’s no answer – everyone is different and no human studies have been done on this. But after 40 days, it’s clear that Andrew had overcome the worst, likely even reversing some of his altered dopamine signalling. “I remember eating my first sweet and thinking it was too sweet,” he said. “I had to rebuild my tolerance.”
And as regulars of a local bakery in Hershey – I can assure you, readers, that he has done just that.
Jordan Gaines Lewis is a Neuroscience Doctoral Candidate at Penn State College of Medicine

View Article Here   Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here   Read More

How Obama wants to spend Americans’ money next year: an agency-by-agency look


PHOTO: President Barack Obama's new $4 trillion budget plan is distributed by the Senate Budget Committee as it arrives on Capitol Hill in Washington, early Monday, Feb. 02, 2015. The fiscal blueprint for the budget year that begins Oct. 1, seeks to raise taxes on wealthier Americans and corporations and use the extra income to lift the fortunes of families who have felt squeezed during tough economic times. Republicans, who now hold the power in Congress, are accusing the president of seeking to revert to tax-and-spend policies that will harm the economy while failing to do anything about soaring spending on government benefit programs. (AP Photo/J. Scott Applewhite)
President Barack Obama's new $4 trillion budget plan is distributed by the Senate Budget Committee as it arrives on Capitol Hill in Washington, early Monday, Feb. 02, 2015. The fiscal blueprint for the budget year that begins Oct. 1, seeks to raise taxes on wealthier Americans and corporations and use the extra income to lift the fortunes of families who have felt squeezed during tough economic times. Republicans, who now hold the power in Congress, are accusing the president of seeking to revert to tax-and-spend policies that will harm the economy while failing to do anything about soaring spending on government benefit programs. (AP Photo/J. Scott Applewhite)


Excerpt from therepublic.com 

WASHINGTON — Sure, $4 trillion sounds like a lot. But it goes fast when your budget stretches from aging highways to medical care to space travel and more.

Here's an agency-by-agency look at how President Barack Obama would spend Americans' money in the 2016 budget year beginning Oct. 1:


HEALTH AND HUMAN SERVICES
Up or down? Up 4.3 percent
What's new? Medicare could negotiate prices for cutting-edge drugs.
Highlights:
— The president's proposed health care budget asks Congress to authorize Medicare to negotiate what it pays for high-cost prescription drugs and for biologics, including advanced medications for diseases such as rheumatoid arthritis. Currently, private insurers bargain on behalf of Medicare beneficiaries. Drug makers have beaten back prior proposals to give Medicare direct pricing power. But the introduction of a $1,000-a-pill hepatitis-C drug last year may have shifted the debate.
— Tobacco taxes would nearly double, to extend health insurance for low-income children. The federal cigarette tax would rise from just under $1.01 per pack to about $1.95 per pack. Taxes on other tobacco products also would go up. That would provide financing to pay for the Children's Health Insurance Program through 2019. The federal-state program serves about 8 million children, and funding technically expires Sept. 30. The tobacco tax hike would take effect in 2016.
— Starting in 2019, the proposal increases Medicare premiums for high-income beneficiaries and adds charges for new enrollees. The charges for new enrollees include a home health copayment, changes to the Part B deductible, and a premium surcharge for seniors who've also purchased a kind of supplemental insurance whose generous benefits are seen as encouraging overuse of Medicare services.
— There's full funding for ongoing implementation of Obama's health care law.
—The plan would end the budget sequester's 2 percent cut in Medicare payments to service providers and repeal another budget formula that otherwise will result in sharply lower payments for doctors. But what one hand gives, the other hand takes away. The budget also calls for Medicare cuts to hospitals, insurers, drug companies and other service providers.
The numbers:
Total spending: $1.1 trillion, including about $1 trillion on benefit programs including Medicare and Medicaid, already required by law.
Spending that needs Congress' annual approval: $80 billion.

NASA
Up or down? Up 2.9 percent
What's new? Not much. Just more money for planned missions.
Highlights:
—The exploration budget — which includes NASA's plans to grab either an asteroid or a chunk of an asteroid and haul it closer to Earth for exploration by astronauts — gets a slight bump in funding. But the details within the overall exploration proposal are key. The Obama plan would put more money into cutting-edge non-rocket space technology; give a 54 percent spending jump to money sent to private firms to develop ships to taxi astronauts to the International Space Station; and cut by nearly 12 percent spending to build the next government big rocket and capsule to carry astronauts. Congress in the past has cut the president's proposed spending on the private firms and technology and boosted the spending on the government big rocket and capsule.
—The president's 0.8 percent proposed increase in NASA science spending is his first proposed jump in that category in four years. It's also the first proposed jump in years in exploring other planets. It includes extra money for a 2020 unmanned Martian rover and continued funding for an eventual robotic mission to Jupiter's moon Europa. But the biggest extra science spending goes to study Earth.
— Obama's budget would cut aeronautics research 12 percent from current spending and slash NASA's educational spending by 25 percent. It also slightly trims the annual spending to build the over-budget multi-billion dollar James Webb Space Telescope, which will eventually replace the Hubble Space Telescope and is scheduled to launch in 2018.
The numbers:
Total spending: $18.5 billion
Spending that needs Congress' annual approval: $18.5 billion

TRANSPORTATION
Up or down? Up 31 percent
What's new? A plan to tackle an estimated $2 trillion in deferred maintenance for the nation's aging infrastructure by boosting highway and transit spending to $478 billion over six years.
Highlights:
— The six-year highway and transit plan would get a one-time $238 billion infusion from the general treasury. Some of the money would be offset by taxing the profits of U.S. companies that haven't been paying taxes on income made overseas. That infusion comes on top of the $35 billion a year that normally comes from gasoline and diesel taxes and other transportation fees.
— The proposal also includes tax incentives to encourage private investment in infrastructure, and an infrastructure investment bank to help finance major transportation projects.
— The new infrastructure investment would be front-loaded. The budget proposes to spend the money over six years and pay for the programs over 10 years.
— The proposal also includes a new Interagency Infrastructure Permitting Improvement Center to coordinate efforts across nearly 20 federal agencies and bureaus to speed up the permitting process. For example, the Coast Guard, Corps of Engineers and Transportation Department are trying to synchronize their reviews of projects such as bridges that cross navigation channels.
The numbers:
Total spending: $94.5 billion, including more than $80 billion already required by law, mostly for highway and transit aid to states and improvement grants to airports.
Spending that needs Congress' annual approval: $14.3 billion.

Associated Press writers Ricardo Alonso-Zaldivar, Seth Borenstein, Joan Lowy and Connie Cass contributed to this report.

View Article Here   Read More

Star Disappears in a Warp In Space-Time


Time warp created by a pulsar



Excerpt from popsci.com

A star has slipped out of view thanks to the space-time warp it creates as it orbits.

The disappearing star is part of a binary star system called J1906. It's a pulsar, which means it's a rotating neutron star, the result of a massive star collapsing in on itself. Researchers have been studying the young pulsar for five years to determine what kind of companion star was orbiting around it. That is, until recently, when the pulsar vanished.

As a pulsar rotates, it emits a beam of electromagnetic radiation, sort of like light coming from a lighthouse. Scientists use radio telescopes that pick up on the pulses coming from the star. But as scientists watched J1906, the pulsar began to slip off the radar. It seems that as the pulsar spins around its companion star, the mass of the companion star makes it sink into a dip in space-time, so that its radio waves can no longer reach Earth. The concept is called geodetic precession, which, according to NASA, uses Einstein’s theory of relativity to understand how massive objects like the Earth curve the space around them, influencing the local space-time fabric.  

The video above illustrates the sinkhole in space created by the pulsar as it orbits the second star. As the warp increases, the pulsar's axis shifts (demonstrated by the arrows), so its radio pulses no longer aim toward Earth's radio telescopes.

But the pulsar won’t be out of sight for forever. Lead scientist Joeri van Leewuen from the Netherlands Institute for Radio Astronomy estimates the star will come back into sight in less than 160 years.

The team’s findings were released Thursday in the Astrophysical Journal in conjunction with the American Astronomical Society’s 225th meeting.

View Article Here   Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here   Read More

Fall Begins Monday: Equinox Myth Debunked


The start of fall in the Northern Hemisphere begins Sept. 22, 2014.
Excert from space.com
By Joe Rao, Space.com Skywatching Columnist 


Sick of long, hot summer days? Well, you're in luck. Astronomically speaking, autumn is about to begin in the north.
On Monday (Sept. 22), at 10:29 p.m. EDT (0229 Sept. 23 GMT) autumn begins astronomically in the Northern Hemisphere. This also marks the start of spring in the southern half of the globe.
This date is called an equinox, from the Latin for "equal night," alluding to the fact that day and night are then of equal length worldwide. But that is not necessarily correct. [Earth's Equinoxes & Solstices Explained (Infographic)] 

Not so equal

Referring to the equinox as being a time of equal day and night is a convenient oversimplification. For one thing, it treats night as simply the time the sun is beneath the horizon, and completely ignores twilight. If the sun were nothing more than a point of light in the sky, and if the Earth lacked an atmosphere, then at the time of an equinox, the sun would indeed spend one half of its path above the horizon and one half below.
But in reality, atmospheric refraction raises the sun's disc by more than its own apparent diameter while it is rising or setting. Thus, when the sun looks like a reddish-orange ball just sitting on the horizon, it's really an optical illusion. It is actually completely below the horizon.
In addition to refraction hastening sunrise and delaying sunset, there is another factor that makes daylight longer than night at an equinox: Sunrise and sunset are defined as the times when the first or last speck of the sun's upper or lower limbs — not the center of the disc — are visible above the horizon.
And this is why if you check your newspaper's almanac or weather page on Monday and look up the times of local sunrise and sunset, you'll notice that the duration of daylight, or the amount of time from sunrise to sunset, still lasts a bit more than 12 hours. 
In New York City, for instance, sunrise is at 6:43 a.m., and sunset comes at 6:54 p.m. So the amount of daylight is not 12 hours, but rather 12 hours and 11 minutes. Not until Sept. 26 are the days and nights truly equal. (On Sept. 26, sunrise is at 6:47 a.m., and sunset is 12 hours later).
At the North Pole, the sun currently is tracing out a 360-degree circle around the entire sky, appearing to skim just above the edge of the horizon. At the moment of this year's autumnal equinox, it should theoretically disappear completely from view, and yet its disc will still be hovering just above the horizon.  Not until 52 hours and 10 minutes later will the last speck of the sun's upper limb finally drop completely out of sight.      
This strong refraction effect also causes the sun's disc to appear oval when it is near the horizon. The amount of refraction increases so rapidly as the sun approaches the horizon that its lower limb is lifted more than the upper one, distorting the sun's disc noticeably.

Not as dark as it seems

Certain astronomical myths die hard. One of these is that the entire Arctic region experiences six months of daylight and six months of darkness. Often, "night" is simply defined by the moment when the sun is beneath the horizon, as if twilight didn't exist. This fallacy is repeated in innumerable geography textbooks, as well as travel articles and guides. 
But twilight illuminates the sky to some extent whenever the sun's upper rim is less than 18 degrees below the horizon. This marks the limit of astronomical twilight, when the sky is indeed totally dark from horizon to horizon.
There are two other types of twilight. Civil (bright) twilight exists when the sun is less than 6 degrees beneath the horizon. It is loosely defined as when most outdoor daytime activities can be continued. Some daily newspapers provide a time when you should turn on your car's headlights. That time usually corresponds to the end of civil twilight.
So, even at the North Pole, while the sun disappears from view for six months beginning Sept. 25, to state that "total darkness" immediately sets in is hardly the case. In fact, civil twilight does not end there until Oct. 8. 
When the sun drops down to 12 degrees below the horizon, it marks the end of nautical twilight, when a sea horizon becomes difficult to discern. In fact, at the end of nautical twilight, most people will regard night as having begun. At the North Pole, nautical twilight does not end until Oct. 25. Finally, astronomical twilight — when the sky indeed becomes completely dark — ends Nov. 13. It then remains perpetually dark until Jan. 29, when the twilight cycles begin anew. So, at the North Pole, the duration of 24-hour darkness lasts almost 11 weeks, not six months.

View Article Here   Read More
Older posts Newer posts




Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑