Tag: looking forward (page 1 of 2)

ADAMA OF TELOS LATEST ENERGY UPDATE via Asara ~ 07 16 17 Galactic Federation of Light

View Article Here   Read More

Sheldan Nidle February 21 2017 Galactic Federation of Light

View Article Here   Read More

RV & ALL OF THE OTHER FUNDS TO BE SET LOOSE! Wake up Call Ohmnipure Galactic Federation of Light

View Article Here   Read More

Sheldan Nidle July-12-2016 Galactic Federation of Light

View Article Here   Read More

5 Ways to Master the Art of Letting Go

Excerpt from huffingtonpost.comWe've all had to let go of things at some point or another. Whether it be a pet, friend, boyfriend, or simply graduating high school. We are constantly ending chapters in order to start new chapters.Though age and expe...

View Article Here   Read More

Recent Disappearances & Strangeness in the Bermuda Triangle

Excerpt from paranormal.lovetoknow.com By Michelle Radcliff The Bermuda Triangle is an area of mostly open ocean located between Bermuda, Miami, Florida and San Juan, Puerto Rico. The unexplained disappearances of hundreds of ships and air...

View Article Here   Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here   Read More

With innovators from around the globe digging in, public moon travel may be only 20 years away



moon
Image Credit: hkeita/Shutterstock


Excerpt from  venturebeat.com
By Vivek Wadhwa

Five teams competing for the $30 million Google Lunar XPRIZE have just been awarded a combined $5.25 million for meeting significant milestones in developing a robot that can safely land on the surface of the moon, travel 500 meters over the lunar surface, and send mooncasts back to the Earth. A tiny startup from India, Team Indus, with no experience in robotics or space flight just won $1 million of this prize. It stood head to head with companies that had been funded by billionaires, had received the assistance of NASA, and had the support of leading universities.
The good news is that governments no longer have a monopoly on space exploration. In two or three decades, we will have entrepreneurs taking us on private spaceflights to the moon. That is what has become possible.

What has changed since the days of the Apollo moon landings is that the cost of building technologies has dropped exponentially. What cost billions of dollars then costs millions now, and sometimes even less. Our smartphones have computers that are more powerful than the Cray supercomputers of yesteryear — which had strict export controls and cost tens of millions of dollars. We carry high-definition cameras in our pockets that are more powerful than those on NASA spacecraft. The cameras in the Mars Curiosity Rover, for example, have a resolution of 2 megapixels with 8GB of flash memory, the same as our clunky first-generation iPhones. The Apollo Guidance Computer, which took humans to the moon in 1966, had a 2.048 MHz processor — slower than those you find in calculators and musical greeting cards.

The same technologies as are available in the United States and Europe are available worldwide. Innovation has globalized.
I met Team Indus while I was in Mumbai to speak at INK last November. When they told me they were competing for the Google Lunar XPRIZE. I didn’t take them seriously because I had seen their counterpart in Silicon Valley, Moon Express, which has the support of tech moguls such as Naveen Jain. How could a scrawny little startup in Bangalore take on Naveen Jain, former NASA engineer Bob Richards, and NASA itself, I thought. The Moon Express team is a force of nature, has the advantage of being on the NASA Ames Research campus, and has been given R&D worth billions of dollars by NASA.

Team Indus was also up against Astrobotic, which is a spinoff from the Carnegie Mellon University Robotics Institute, and Israel-based SpaceIL, which has the backing of the country’s top research institutes.

The company’s win blew my mind. Even though the subject of my INK talk was how Indian entrepreneurs could help change the world, I didn’t think it was already happening.

(See my Jan. 1 story on the Indian tech scene and watch this talk to learn more: Why India shouldn’t be succeeding but is.)

The Bangalore-based startup was founded by former I.T. executive Rahul Narayan and four of his friends: an Air Force pilot, a marketing executive, an investment banker, and an aerospace engineer. None of the team had experience in building spacecraft or robots, yet they were able to build technology that could navigate to the moon.

Narayan says he expects completion of his space mission to cost around $30 million. Moon Express chief executive Bob Richards estimates $50 million. These numbers are higher than the $20 million prize that they hope to win. But both see far greater opportunities: They hope to be pioneers in what could be a trillion-dollar industry. Richards is looking to mine the moon for minerals and bring them back to Earth. Each payload could be worth billions.

The Google Lunar XPRIZE has 26 teams competing from around the world. Collectively, they will spend in the hundreds of millions of dollars on their efforts. For them, it is not all about winning the contest; many of the losers will still commercialize their space technologies or put their knowledge to use in other fields. This is the power of such competitions. They lead entrants to spend multiples of the offered purse on innovative solutions. And they motivate people outside the industry, such as Narayan, to enter it with out-of-the-box thinking.

Innovation prizes are not new. In fact, a number of celebrated historical feats were made possible, in part, by the desire to win these prizes. In the 1920s, New York hotel owner Raymond Orteig offered a $25,000 prize to the first person to fly non-stop between New York and Paris. Several unsuccessful attempts were made before an American airmail pilot named Charles Lindbergh won the competition in 1927 with his plane, The Spirit of St. Louis
Lindbergh’s achievement made him a national hero and a global celebrity. And it sparked the interest and investment that led to the modern aviation industry.

That is what I expect will come of the Lunar XPRIZE. And that is why I am looking forward to booking my round-trip ticket to the moon one summer in the 2030s.

View Article Here   Read More

Ring in the New Year with comet Lovejoy





Excerpt from smnweekly.com

Comet Lovejoy is scheduled to make an appearance right before New Year’s Day, a treat for astronomers looking forward to 2015.

Most revelers will be looking up to the sky to see the ball drop on New Year’s Eve, but skywatchers could be in for a treat if it’s not cloudy out: at around 11 PM local time the little comet, which looks a bit like a fuzzy green caterpillar, should be visible as it passes across the shins of the constellation Orion.

Of course not everyone is going to be interested in freezing their chestnuts off, especially in the colder climates of North America. If it’s too chilly for you to strain your eyes in order to spot the magnitude 5 comet, you can stay inside in the warmth and just wait for Lovejoy to grow a bit brighter. In fact, astronomers say you can expect the magnitude 5 comet to brighten to magnitude 4.1 over the next few weeks.

Best viewing conditions for New Year’s Eve will likely involve a bit of luck in not having any cloud cover. In addition, if you’ve got a pair of binoculars or a decent telescope you shouldn’t have any trouble spotting it – in fact, according to Alan MacRobert, senior editor of Sky and Telescope magazine, Lovejoy was clearly visible by using a pair of 10×50 magnification binoculars in a region that had more than its fair share of light pollution.


View Article Here   Read More

Galactic Federation of Light Sheldan Nidle September-24-2013

View Article Here   Read More

Heaven Letters April-06-2013

View Article Here   Read More

Heavenletter #4115 During the Waiting Interims on Earth, March 1, 2012

{mainvote}

God said: I tell you not to fear, and you fear. Do you know better than I? Do you think you are helpless and there is nothing you can do but worry?

I understand that you sense danger. Unwanted events do occur. I do no...

View Article Here   Read More

New Earth Rising- Adventures In The New Consciousness by Celia Fenn

{mainvote}

2 February 2012

16th January 2012 : The Year 2012....Looking backwards, looking forwards.....alignments and new energies...... So, here we are in the year 2012, and already half way through the first month of January! What an exci...

View Article Here   Read More
Older posts

Let’s Celebrate

Dimensional Bliss's AnniversaryJuly 11, 2017
In July 2006 dimensionalbliss.com was created to facilitate sharing of seeds of awareness on our life's journeys. InJoY and much gratitude to all. ~sethd8 and the Galactics.

VISITORS TO THIS LIGHT GRID NODE

1,756,675 Earthlings Expanding
Since 2006

Please Visit:  Alcohol Awareness





Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑