Tag: movie (page 1 of 16)

Lois Lane

Lois Lane Saves the World!

The post Lois Lane appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here   Read More

Solar System Status Update

The Oort cloud, which extends a few light years beyond the outer Solar System, is full of motherships of the Galactic Confederation, a large gathering of representatives of hundreds of thousands of positive races from throughout the Galaxy:https://en.w...

View Article Here   Read More

Greg Giles ~ Beyond Discernment ~ Who are the Authentic Channels? Part 1

I wish to make it clear that the complicity of Freemasons in this mind control program which uses synthetic telepathy, or voice to skull (V2K) technology, is not a theory I am proposing but point of fact, as the group that had been sending me the '...

View Article Here   Read More

Celebrating Genocide – The Real Story of Thanksgiving

Irwin Ozborne, ContributorThanksgiving: Celebrating all that we have, and the genocide it took to get it.Thanksgiving is one of the most paradoxical times of the year. We gather together with friends and family in celebration of all that we are thankful for and express our gratitude, at the same time we are encouraged to eat in excess. But the irony really starts the next day on Black Friday. On Thursday we appreciate all the simple things in life, such as having a meal, a roof over [...]

View Article Here   Read More

The World Of Quantum Physics: EVERYTHING Is Energy

by John Assaraf,Nobel Prize winning physicists have proven beyond doubt that the physical world is one large sea of energy that flashes into and out of being in milliseconds, over and over again.Nothing is solid.This is the world of Quantum Physics.They have proven that thoughts are what put together and hold together this ever-changing energy field into the ‘objects’ that we see.So why do we see a person instead of a flashing cluster of energy?Think of a movie [...]

View Article Here   Read More

Hawking: Humans may lose to machines in a hundred years or so without even knowing it.






Excerpt from esbtrib.com


Stephen Hawking, the scientist and not Stephen King, the novelist has made some dire predictions about the coming conquest of humans by their own creations, robots. King can write something about this in effect but he will have a hard time surpassing the number one robot movie of all time, the terminator.
Humans’ dependence on electronic technology to make their life comfortable and much easier may one day backfire on them. The scientist said that humans have become so complacent that they may not survive in the future.
In a conference held just recently, Hawking noted that robots and artificial intelligence could take over the world and conquer mankind in the next 10 decades. By 2115, the world will cease to exist as we know it today. While speaking at the Zeitgeist conference held in London, Hawking explained that humans need to come to terms with how they should go forward and not fall into complacency with how robotics and artificial intelligence are taking over without them even knowing it.
“One can imagine such technology outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on whether it can be controlled at all”, he continued.
(Hawking continued to explain3ed that technology advancements that outsmarts financial markets, creating more and better inventions than humans, putting world leaders  under its influence and coming up with advanced weaponry are slowly putting humans at a disadvantage. Researches should be made considering what AI would mean for humans.
.Creation of Ai would be in no doubt the greatest achievement of what humans can do if they can do it. It might also their last act if they’re not careful about it.
Humans’ have notoriously slow biological evolution and their ability to challenge the AI is almost none existent compared to what the machines can muster. Elon Musk agrees with Hawking about the dangers posed by AIs.

View Article Here   Read More

How Your Mind Affects Your Body

Excerpt from huffingtonpost.comWe are at last beginning to show that there is an intimate and dynamic relationship between what is going on with our feelings and thoughts and what happens in the body. A Time magazine special showed that happiness, h...

View Article Here   Read More

13 Things Anyone Who Loves A Highly Sensitive Person Should Know

Excerpt from huffingtonpost.com When I was in kindergarten, a boy in my class tossed my favorite book over our elementary school fence. I remember crying profusely, not because I was sad to see it go, but because I was so furious that he was s...

View Article Here   Read More

Hypatia, Ancient Alexandria’s Great Female Scholar

An avowed paganist in a time of religious strife, Hypatia was also one of the first women to study math, astronomy and philosophy On the streets of Alexandria, Egypt, a mob led by Peter the Lector brutally murdered Hypatia, one of the last great thinkers of ancient Alexandria. (Mary Evans Picture Library / Alamy) By Sarah Zielinskismithsonian.com One day on the streets of Alexandria, Egypt, in the year 415 or 416, a mob of Christian zealots led by Peter the Lector accosted a wom [...]

View Article Here   Read More

NASA video illustrates ‘X-ray wind’ blasting from a black hole

This artist's illustration shows interstellar gas, the raw material of star formation, being blown away.Excerpt from cnet.com It takes a mighty wind to keep stars from forming. Researchers have found one in a galaxy far, far away -- and NASA mad...

View Article Here   Read More

NASA’s Plan to Give the Moon a Moon


arm-capture_0




Excerpt from wired.com

It sounds almost like a late ’90s sci-fi flick: NASA sends a spacecraft to an asteroid, plucks a boulder off its surface with a robotic claw, and brings it back in orbit around the moon. Then, brave astronaut heroes go and study the space rock up close—and bring samples back to Earth.
Except it’s not a movie: That’s the real-life idea for the Asteroid Redirect Mission, which NASA announced today. Other than simply being an awesome space version of the claw arcade game (you know you really wanted that stuffed Pikachu), the mission will let NASA test technology and practice techniques needed for going to Mars.
The mission, which will cost up to $1.25 billion, is slated to launch in December 2020. It will take about two years to reach the asteroid (the most likely candidate is a quarter-mile-wide rock called 2008 EV5). The spacecraft will spend up to 400 days there, looking for a good boulder. After picking one—maybe around 13 feet in diameter—it will bring the rock over to the moon. In 2025, astronauts will fly NASA’s still-to-be-built Orion to dock with the asteroid-carrying spacecraft and study the rock up close.
Although the mission would certainly give scientists an up-close opportunity to look at an asteroid, its main purpose is as a testing ground for a Mars mission. The spacecraft will test a solar electronic propulsion system, which uses the power from solar panels to pump out charged particles to provide thrust. It’s slower than conventional rockets, but a lot more efficient. You can’t lug a lot of rocket fuel to Mars.
Overall, the mission gives NASA a chance at practicing precise navigation and maneuvering techniques that they’ll need to master for a Mars mission. Such a trip will also require a lot more cargo, so grabbing and maneuvering a big space rock is good practice. Entering lunar orbit and docking with another spacecraft would also be helpful, as the orbit might be a place for a deep-space habitat, a rendezvous point for astronauts to pick up cargo or stop on their way to Mars.
And—you knew this part was coming, Armageddon fans—the mission might teach NASA something about preventing an asteroid from striking Earth. After grabbing the boulder, the spacecraft will orbit the asteroid. With the added heft from the rock, the spacecraft’s extra gravity would nudge the asteroid, creating a slight change in trajectory that NASA could measure from Earth. “We’re not talking about a large deflection here,” says Robert Lightfoot, an associate administrator at NASA. But the idea is that a similar technique could push a threatening asteroid off a collision course with Earth.
NASA chose this mission concept over one that would’ve bagged an entire asteroid. In that plan, the spacecraft would’ve captured the space rock by enclosing it in a giant, flexible container. The claw concept won out because its rendezvous and soft-landing on the asteroid will allow NASA to test and practice more capabilities in preparation for a Mars mission, Lightfoot says. The claw would’ve also given more chances at grabbing a space rock, whereas it was all or nothing with the bag idea. “It’s a one-shot deal,” he says. “It is what it is when we get there.” But the claw concept offers some choices. “I’ve got three to five opportunities to pull one of the boulders off,” he says. Not bad odds. Better than winning that Pikachu

View Article Here   Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here   Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here   Read More
Older posts




Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑