Tag: Pennsylvania (page 1 of 2)

Overprescription of Antipsychotic Drugs Causing Public Health Crisis

Julie Fidler, Natural SocietySometimes with life-threatening side effects…Antipsychotic drugs are being prescribed to an ever-increasing number of adolescents and young adults, and many of them are being prescribed for off-label purposes. But these over-prescriptions are putting youngsters at risk, though we’re slow as a society to change our med-heavy ways.These powerful medications are being prescribed to young people with attention-deficit and hyperactivity [...]

View Article Here   Read More

5 Signs the California Drought Could Get Worse

Anastasia Pantsios, EcoWatchCalifornia is entering its fourth year of drought, with high temperatures, water shortages and increased wildfires. The state has taken some steps to address the impacts of that, including addressing greenhouse gas emissions and rationing its diminishing water supply. But there are signs that the impacts of drought on the state could get even worse.1. A new study shows that if greenhouse gas emissions continue to ris [...]

View Article Here   Read More

Tesla to unveil ‘mystery’ life changing product tonight!



Tesla's expected home battery announcement could spark energy revolution. SolarCity has already installed 300 Tesla-made batteries in California homes.


 Excerpt from CBC News 

Tesla CEO Elon Musk is set to make an announcement later tonight. There's been speculation that a large-scale battery announcement is expected, but it's not clear if that will be the case.



The man behind the electric car revolution is expected to unveil a large-scale battery capable of powering an entire house, during an announcement at Tesla Motors headquarters in Hawthorne, Calif.
While the battery will likely slash power bills for consumers, some say it's also a move toward democratizing energy systems.

Elon Musk, CEO of Tesla Motors, teased the announcement on Twitter a month ago, saying a major new Tesla product line will be unveiled at Hawthorne Design Studio at 8 p.m. local time Thursday. "Not a car," he wrote, sparking speculation that it may be a home battery.

Musk, who moved to Canada from South Africa and who briefly studied at Queen's University in Kingston, Ont., before transferring to the University of Pennsylvania, is also chairman of SolarCity, a solar power provider.

SolarCity has already run a pilot program where it installed 300 home batteries made by Tesla in California homes. Another 130 systems were being installed in early 2015, according to the company's website.

The product will be available again in late summer, the company says, as it's working on "the next phase" of the program.

Tesla is also in the midst of building its gigafactory, which has added to the speculation that the company is unveiling a home battery. Musk says that by 2020, the factory will produce more lithium-ion batteries than all the current factories producing them today. 

A home battery attaches to a home's electrical system and collects energy gathered by solar panels when the sun is out, Michael Ramsey, a Wall Street Journal automotive reporter, told CBC's The Current. That energy can then be used when the sun is no longer out.
'This is this shift away from very large centrally operated plants towards everybody owning their own little power grid or part of a small power grid in a condo building.'-— Warren Mabee, of Queen's University
"The idea is that you purchase this system and it allows you effectively to cut the cord," he says of a consumer's ability to forgo energy from the grid. The consumer's electricity bills would be significantly reduced because they would be paying for less electricity from the grid.

This innovation could move the world toward a future where power is generated where we need it and where we use it, says Warren Mabee, director of the Queen's Institute for Energy and Environmental Policy.

"This is this shift away from very large centrally operated plants towards everybody owning their own little power grid or part of a small power grid in a condo building," Mabee says.

In this system, centralized power generation becomes more of a backup than a driver, he says.

Costs remain high

However, the current systems are still very expensive, says Ramsey. The 300 home batteries installed in California cost upward of $20,000, he says.

"It would take years and years and years to cover the utility costs," he says. "It doesn't make sense unless the costs come down."

Ramsey views businesses as having the highest possible economic advantage from this development. The battery could offer businesses a surge of electricity when they have a high demand for power and cut their bills.

Mabee compares the cost of solar panels to cellphones. Smartphones were once very expensive, but each new generation has brought the cost down, he said.

Each year, solar panels become better and cheaper. Solar panels are getting close to their grid parity moment — when the cost of generating solar power is the same or cheaper than buying energy off the grid.

Another grid parity moment may be close, says Mabee. It won't be long before the cost of a solar panel and battery system will match the cost of purchasing electricity from the grid, he estimates.
"That magic grid parity moment is coming faster and faster," he said.

View Article Here   Read More

Billionaire teams up with NASA to mine the moon




Excerpt from cnbc.com
By Susan Caminiti



Moon Express, a Mountain View, California-based company that's aiming to send the first commercial robotic spacecraft to the moon next year, just took another step closer toward that lofty goal. 

Earlier this year, it became the first company to successfully test a prototype of a lunar lander at the Kennedy Space Center in Florida. The success of this test—and a series of others that will take place later this year—paves the way for Moon Express to send its lander to the moon in 2016, said company co-founder and chairman Naveen Jain.

Moon Express conducted its tests with the support of NASA engineers, who are sharing with the company their deep well of lunar know-how. The NASA lunar initiative—known as Catalyst—is designed to spur new commercial U.S. capabilities to reach the moon and tap into its considerable resources.In addition to Moon Express, NASA is also working with Astrobotic Technologies of Pittsburgh, Pennsylvania, and Masten Space Systems of Mojave, California, to develop commercial robotic spacecrafts. 

Jain said Moon Express also recently signed an agreement to take over Space Launch Complex 36 at Cape Canaveral. The historic launchpad will be used for Moon Express's lander development and flight-test operations. Before it was decommissioned, the launchpad was home to NASA's Atlas-Centaur rocket program and its Surveyor moon landers.

"Clearly, NASA has an amazing amount of expertise when it comes to getting to the moon, and it wants to pass that knowledge on to a company like ours that has the best chance of being successful," said Jain, a serial entrepreneur who also founded Internet companies Infospace and Intelius. He believes that the moon holds precious metals and rare minerals that can be brought back to help address Earth's energy, health and resource challenges. 

Among the moon's vast riches: gold, cobalt, iron, palladium, platinum, tungsten and Helium-3, a gas that can be used in future fusion reactors to provide nuclear power without radioactive waste. "We went to the moon 50 years ago, yet today we have more computing power with our iPhones than the computers that sent men into space," Jain said. "That type of exponential technological growth is allowing things to happen that was never possible before."

An eye on the Google prize

Source: MoonExpress

Helping to drive this newfound interest in privately funded space exploration is the Google Lunar X Prize. It's a competition organized by the X Prize Foundation and sponsored by Google that will award $30 million to the first company that lands a commercial spacecraft on the moon, travels 500 meters across its surface and sends high-definition images and video back to Earth—all before the end of 2016.

Moon Express is already at the front of the pack. In January it was awarded a $1 million milestone prize from Google for being the only company in the competition so far to test a prototype of its lander. "Winning the X prize would be a great thing," said Jain. "But building a great company is the ultimate goal with us." When it comes to space exploration, he added, "it's clear that the baton has been passed from the government to the private sector."

Testing in stages

Jain said Moon Express has been putting its lunar lander through a series of tests at the space center. The successful outing earlier this year involved tethering the vehicle—which is the size of a coffee table—to a crane in order to safely test its control systems. "The reason we tethered it to the crane is because the last thing we wanted was the aircraft to go completely haywire and hurt someone," he said. 

At the end of March, the company will conduct a completely free flight test with no tethering. The lander will take off from the pad, go up and sideways, then land back at the launchpad. "This is to test that the vehicle knows where to go and how to get back to the launchpad safely," Jain explained.


Once all these tests are successfully completed, Jain said the lander—called MX-1—will be ready to travel to the moon. The most likely scenario is that it will be attached to a satellite that will take the lander into a low orbit over the Earth. From there the MX-1 will fire its own rocket, powered by hydrogen peroxide, and launch from that orbit to complete its travel to the moon's surface. 

The lander's first mission is a one-way trip, meaning that it's not designed to travel back to the Earth, said Jain. "The purpose is to show that for the first time, a company has developed the technology to land softly on the moon," he said. "Landing on the moon is not the hard part. Landing softly is the hard part." 

That's because even though the gravity of the moon is one-sixth that of the Earth's, the lander will still be traveling down to the surface of the moon "like a bullet," Jain explained. Without the right calculations to indicate when its rockets have to fire in order to slow it down, the lander would hit the surface of the moon and break into millions of pieces. "Unlike here on Earth, there's no GPS on the moon to tell us this, so we have to do all these calculations first," he said. 

Looking ahead 15 or 20 years, Jain said he envisions a day when the moon is used as a sort of way station enabling easier travel for exploration to other planets. In the meantime, he said the lander's second and third missions could likely involve bringing precious metals, minerals and even moon rocks back to Earth. "Today, people look at diamonds as this rare thing on Earth," Jain said.
He added, "Imagine telling someone you love her by giving her the moon."

View Article Here   Read More

Habitable’ Super-Earth Might Exist After All


Artist's impression of Gliese 581d, a controversial exoplanet that may exist only 20 light-years from Earth.



Excerpt from news.discovery.com

Despite having discovered nearly 2,000 alien worlds beyond our solar system, the profound search for exoplanets — a quest focused on finding a true Earth analog — is still in its infancy. It is therefore not surprising that some exoplanet discoveries aren’t discoveries at all; they are in fact just noise in astronomical data sets.

But when disproving the existence of extrasolar planets that have some characteristics similar to Earth, we need to take more care during the analyses of these data, argue astronomers from Queen Mary, University of London and the University of Hertfordshire.

In a paper published by the journal Science last week, the researchers focus on the first exoplanet discovered to orbit a nearby star within its habitable zone.

Revealed in 2009, Gliese 581d hit the headlines as a “super-Earth” that had the potential to support liquid water on its possibly rocky surface. With a mass of around 7 times that of Earth, Gliese 581d would be twice as big with a surface gravity around twice that of Earth. Though extreme, it’s not such a stretch of the imagination that such a world, if it is proven to possess an atmosphere and liquid ocean, that life could take hold.

And the hunt for life-giving alien worlds is, of course, the central motivation for exoplanetary studies.

But the exoplanet signal has been called into doubt.
Gliese 581d’s star, Gliese 581, is a small red dwarf around 20 light-years away. Red dwarfs are known to be tempestuous little stars, often generating violent flaring outbursts and peppered in dark features called starspots. To detect the exoplanet, astronomers measured the very slight frequency shift (Doppler shift) of light from the star — as the world orbits, it exerts a tiny gravitational “tug”, causing the star to wobble. When this periodic wobble is detected, through an astronomical technique known as the “radial velocity method,” a planet may be revealed.

Last year, however, in a publication headed by astronomers at The Pennsylvania State University, astronomers pointed to the star’s activity as an interfering factor that may have imitated the signal from an orbiting planet when in fact, it was just noisy data.

But this conclusion was premature, argues Guillem Anglada-Escudé, of Queen Mary, saying that “one needs to be more careful with these kind of claims.”

“The existence, or not, of GJ 581d is significant because it was the first Earth-like planet discovered in the ‘Goldilocks’-zone around another star and it is a benchmark case for the Doppler technique,” said Anglada-Escudé in a university press release. “There are always discussions among scientists about the ways we interpret data but I’m confident that GJ 581d has been in orbit around Gliese 581 all along. In any case, the strength of their statement was way too strong. If the way to treat the data had been right, then some planet search projects at several ground-based observatories would need to be significantly revised as they are all aiming to detect even smaller planets.”

The upshot is that this new paper challenges the statistical technique used in 2014 to account for the signal being stellar noise — focusing around the presence of starspots in Gliese 581′s photosphere.

Gliese 581d isn’t the only possible exoplanet that exists around that star — controversy has also been created by another, potentially habitable exoplanet called Gliese 581g. Also originally detected through the wobble of the star, this 3-4 Earth mass world was found to also be in orbit within the habitable zone. But its existence has been the focus of several studies supporting and discounting its presence. Gliese 581 is also home to 3 other confirmed exoplanets, Gliese 581e, b and c.

Currently, observational data suggests Gliese 581g was just noise, but as the continuing debate about Gliese 581d is proving, this is one controversy that will likely keep on rumbling in the scientific journals for some time.

View Article Here   Read More

What happens to your body when you give up sugar?





Excerpt from independent.co.uk
By Jordan Gaines Lewis


In neuroscience, food is something we call a “natural reward.” In order for us to survive as a species, things like eating, having sex and nurturing others must be pleasurable to the brain so that these behaviours are reinforced and repeated.
Evolution has resulted in the mesolimbic pathway, a brain system that deciphers these natural rewards for us. When we do something pleasurable, a bundle of neurons called the ventral tegmental area uses the neurotransmitter dopamine to signal to a part of the brain called the nucleus accumbens. The connection between the nucleus accumbens and our prefrontal cortex dictates our motor movement, such as deciding whether or not to taking another bite of that delicious chocolate cake. The prefrontal cortex also activates hormones that tell our body: “Hey, this cake is really good. And I’m going to remember that for the future.”
Not all foods are equally rewarding, of course. Most of us prefer sweets over sour and bitter foods because, evolutionarily, our mesolimbic pathway reinforces that sweet things provide a healthy source of carbohydrates for our bodies. When our ancestors went scavenging for berries, for example, sour meant “not yet ripe,” while bitter meant “alert – poison!”
Fruit is one thing, but modern diets have taken on a life of their own. A decade ago, it was estimated that the average American consumed 22 teaspoons of added sugar per day, amounting to an extra 350 calories; it may well have risen since then. A few months ago, one expert suggested that the average Briton consumes 238 teaspoons of sugar each week.
Today, with convenience more important than ever in our food selections, it’s almost impossible to come across processed and prepared foods that don’t have added sugars for flavour, preservation, or both.
These added sugars are sneaky – and unbeknown to many of us, we’ve become hooked. In ways that drugs of abuse – such as nicotine, cocaine and heroin – hijack the brain’s reward pathway and make users dependent, increasing neuro-chemical and behavioural evidence suggests that sugar is addictive in the same way, too.

Sugar addiction is real

Anyone who knows me also knows that I have a huge sweet tooth. I always have. My friend and fellow graduate student Andrew is equally afflicted, and living in Hershey, Pennsylvania – the “Chocolate Capital of the World” – doesn’t help either of us. But Andrew is braver than I am. Last year, he gave up sweets for Lent. “The first few days are a little rough,” Andrew told me. “It almost feels like you’re detoxing from drugs. I found myself eating a lot of carbs to compensate for the lack of sugar.”
There are four major components of addiction: bingeing, withdrawal, craving, and cross-sensitisation (the notion that one addictive substance predisposes someone to becoming addicted to another). All of these components have been observed in animal models of addiction – for sugar, as well as drugs of abuse.
A typical experiment goes like this: rats are deprived of food for 12 hours each day, then given 12 hours of access to a sugary solution and regular chow. After a month of following this daily pattern, rats display behaviours similar to those on drugs of abuse. They’ll binge on the sugar solution in a short period of time, much more than their regular food. They also show signs of anxiety and depression during the food deprivation period. Many sugar-treated rats who are later exposed to drugs, such as cocaine and opiates, demonstrate dependent behaviours towards the drugs compared to rats who did not consume sugar beforehand.
Like drugs, sugar spikes dopamine release in the nucleus accumbens. Over the long term, regular sugar consumption actually changes the gene expression and availability of dopamine receptors in both the midbrain and frontal cortex. Specifically, sugar increases the concentration of a type of excitatory receptor called D1, but decreases another receptor type called D2, which is inhibitory. Regular sugar consumption also inhibits the action of the dopamine transporter, a protein which pumps dopamine out of the synapse and back into the neuron after firing.
In short, this means that repeated access to sugar over time leads to prolonged dopamine signalling, greater excitation of the brain’s reward pathways and a need for even more sugar to activate all of the midbrain dopamine receptors like before. The brain becomes tolerant to sugar – and more is needed to attain the same “sugar high.”

Sugar withdrawal is also real

Although these studies were conducted in rodents, it’s not far-fetched to say that the same primitive processes are occurring in the human brain, too. “The cravings never stopped, [but that was] probably psychological,” Andrew told me. “But it got easier after the first week or so.”
In a 2002 study by Carlo Colantuoni and colleagues of Princeton University, rats who had undergone a typical sugar dependence protocol then underwent “sugar withdrawal.” This was facilitated by either food deprivation or treatment with naloxone, a drug used for treating opiate addiction which binds to receptors in the brain’s reward system. Both withdrawal methods led to physical problems, including teeth chattering, paw tremors, and head shaking. Naloxone treatment also appeared to make the rats more anxious, as they spent less time on an elevated apparatus that lacked walls on either side.
Similar withdrawal experiments by others also report behaviour similar to depression in tasks such as the forced swim test. Rats in sugar withdrawal are more likely to show passive behaviours (like floating) than active behaviours (like trying to escape) when placed in water, suggesting feelings of helplessness.
A new study published by Victor Mangabeira and colleagues in this month’s Physiology & Behavior reports that sugar withdrawal is also linked to impulsive behaviour. Initially, rats were trained to receive water by pushing a lever. After training, the animals returned to their home cages and had access to a sugar solution and water, or just water alone. After 30 days, when rats were again given the opportunity to press a lever for water, those who had become dependent on sugar pressed the lever significantly more times than control animals, suggesting impulsive behaviour.
These are extreme experiments, of course. We humans aren’t depriving ourselves of food for 12 hours and then allowing ourselves to binge on soda and doughnuts at the end of the day. But these rodent studies certainly give us insight into the neuro-chemical underpinnings of sugar dependence, withdrawal, and behaviour.
Through decades of diet programmes and best-selling books, we’ve toyed with the notion of “sugar addiction” for a long time. There are accounts of those in “sugar withdrawal” describing food cravings, which can trigger relapse and impulsive eating. There are also countless articles and books about the boundless energy and new-found happiness in those who have sworn off sugar for good. But despite the ubiquity of sugar in our diets, the notion of sugar addiction is still a rather taboo topic.
Are you still motivated to give up sugar? You might wonder how long it will take until you’re free of cravings and side-effects, but there’s no answer – everyone is different and no human studies have been done on this. But after 40 days, it’s clear that Andrew had overcome the worst, likely even reversing some of his altered dopamine signalling. “I remember eating my first sweet and thinking it was too sweet,” he said. “I had to rebuild my tolerance.”
And as regulars of a local bakery in Hershey – I can assure you, readers, that he has done just that.
Jordan Gaines Lewis is a Neuroscience Doctoral Candidate at Penn State College of Medicine

View Article Here   Read More

Watch This ‘Celestial Visitor’ Turn Into a Massive Fireball Over Pennsylvania


That was more than a regular old shooting star — that was a meteor that illuminated the whole sky.
A giant space rock fired up the firmament Tuesday night near Pittsburgh, and NASA caught the whole thing on camera.



Excerpt from theblaze.com

Using a network of 15 specialized cameras around the country, NASA tracks fireball events throughout the U.S.

NASA estimated the size of Tuesday’s meteor to be roughly 500 pounds and said the rock blew up as it traveled some 45,000 miles per hour through the atmosphere.

For a meteor’s-eye-view of the event, check out NASA’s Facebook post below:

“This celestial visitor had an orbit that took it out to the main asteroid belt between Mars and Jupiter,” read part of NASA’s Facebook post on the meteor. “[I]t came a mightly long way to a fiery end in the predawn Pennsylvania sky.”

The massive rock broke up into tiny fragments in the atmosphere, but NASA said some of those fragments may be near Kittaning, Pennsylvania.


Click to zoom

View Article Here   Read More

Elon Musk drops space plans into Seattle’s lap




Excerpt from seattletimes.com

Elon Musk thought three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

Of all the newcomers we’ve seen here lately, one of the more interesting is Elon Musk.

The famous entrepreneur isn’t going to live here, at least not yet. But earlier this month he did announce plans to bulk up an engineering center near Seattle for his SpaceX venture. The invitation-only event was held in the shadow of the Space Needle.
If the plan happens, SpaceX would join Planetary Resources and Blue Origin in a budding Puget Sound space hub. With talent from Boeing, the aerospace cluster and University of Washington, this offers fascinating potential for the region’s future.

Elon Musk sounds like the name of a character from a novel that would invariably include the sentence, “he had not yet decided whether to use his powers for good or for evil.”

He is said to have been the inspiration for the character Tony Stark, played by Robert Downey Jr. in the “Iron Man” movies. He’s also been compared to Steve Jobs and even Thomas Edison.

The real Musk seems like a nice-enough chap, at least based on his ubiquitous appearances in TED talks and other venues.

Even the semidishy essay in Marie Claire magazine by his first wife, Justine, is mostly about the challenge to the marriage as Musk became very rich, very young, started running with a celebrity crowd and exhibited the monomaniacal behavior common to the entrepreneurial tribe.

A native of South Africa, Musk emigrated to Canada and finally to the United States, where he received degrees from the University of Pennsylvania’s prestigious Wharton School. He left Stanford’s Ph.D. program in applied physics after two days to start a business.
In 1995, he co-founded Zip2, an early Internet venture for newspapers. Four years later, he co-founded what would become PayPal. With money from eBay’s acquisition of PayPal, he started SpaceX. He also invested in Tesla Motors, the electric-car company, eventually becoming chief executive. Then there’s Solar City, a major provider of solar-power systems.

Musk has said that early on he sensed three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

At age 43, Musk is seven years younger than Jeff Bezos and more than 15 years younger than Bill Gates.

His achievements haven’t come without controversy. Tesla played off several states against each other for a battery factory. Nevada, desperate to diversify its low-wage economy, won, if you can call it that.

The price tag was $1.4 billion in incentives and whether it ever pays off for the state is a big question. A Fortune magazine investigation showed Musk not merely as a visionary but also a master manipulator with a shaky deal. Musk, no shrinking violet, fired back on his blog.

SpaceX is a combination of the practical and the hyperambitious, some would say dreamy.

On the practical side, the company is one of those chosen by the U.S. government to resupply the International Space Station. Musk also hopes to put 4,000 satellites in low-Earth orbit to provide inexpensive Internet access worldwide.

The satellite venture will be based here, with no financial incentives from the state.

But he also wants to make space travel less expensive, generate “a lot of money” through SpaceX, and eventually establish a Mars colony.

“SpaceX, or some combination of companies and governments, needs to make progress in the direction of making life multiplanetary, of establishing a base on another planet, on Mars — being the only realistic option — and then building that base up until we’re a true multiplanet species,” he said during a TED presentation.

It’s heady stuff. And attractive enough to lead Google and Fidelity Investments to commit $1 billion to SpaceX.

Also, in contrast with the “rent-seeking” and financial plays of so many of the superwealthy, Musk actually wants to create jobs and solve practical problems.

If there’s a cautionary note, it is that market forces alone can’t address many of our most serious challenges. Indeed, in some cases they make them worse.

Worsening income inequality is the work of the hidden hand, unfettered by antitrust regulation, progressive taxation, unions and protections against race-to-the-bottom globalization.

If the hidden costs of spewing more carbon into the atmosphere are not priced in, we have today’s market failure exacerbating climate change. Electric cars won’t fix that as long as the distortions favoring fossil fuels remain.

So a broken, compromised government that’s cutting research dollars and failing to invest in education and forward-leaning infrastructure is a major impediment.

The United States did not reach the moon because of a clever billionaire, but through a national endeavor to serve the public good. I know, that’s “so 20th century.” 

Also, as Northwestern University economist Robert Gordon might argue, visionaries such as Thomas Edison grabbed relatively low-hanging fruit, with electrification creating huge numbers of jobs. 

Merely recovering the lost demand of the Great Recession has proved difficult. Another electrificationlike revolution that lifts all boats seems improbable.

I’m not sure that’s true. But it will take more than Iron Man to rescue the many Americans still suffering.

View Article Here   Read More

Theoretical physics: The origins of space and time


Excerpt from nature.com
By Zeeya Merali


Many researchers believe that physics will not be complete until it can explain not just the behaviour of space and time, but where these entities come from.

“Imagine waking up one day and realizing that you actually live inside a computer game,” says Mark Van Raamsdonk, describing what sounds like a pitch for a science-fiction film. But for Van Raamsdonk, a physicist at the University of British Columbia in Vancouver, Canada, this scenario is a way to think about reality. If it is true, he says, “everything around us — the whole three-dimensional physical world — is an illusion born from information encoded elsewhere, on a two-dimensional chip”. That would make our Universe, with its three spatial dimensions, a kind of hologram, projected from a substrate that exists only in lower dimensions.

This 'holographic principle' is strange even by the usual standards of theoretical physics. But Van Raamsdonk is one of a small band of researchers who think that the usual ideas are not yet strange enough. If nothing else, they say, neither of the two great pillars of modern physics — general relativity, which describes gravity as a curvature of space and time, and quantum mechanics, which governs the atomic realm — gives any account for the existence of space and time. Neither does string theory, which describes elementary threads of energy.

Free podcast

Zeeya Merali discusses some of the theories that are trying to explain the origins of space and time.


Van Raamsdonk and his colleagues are convinced that physics will not be complete until it can explain how space and time emerge from something more fundamental — a project that will require concepts at least as audacious as holography. They argue that such a radical reconceptualization of reality is the only way to explain what happens when the infinitely dense 'singularity' at the core of a black hole distorts the fabric of space-time beyond all recognition, or how researchers can unify atomic-level quantum theory and planet-level general relativity — a project that has resisted theorists' efforts for generations.

“All our experiences tell us we shouldn't have two dramatically different conceptions of reality — there must be one huge overarching theory,” says Abhay Ashtekar, a physicist at Pennsylvania State University in University Park.

Finding that one huge theory is a daunting challenge. Here, Nature explores some promising lines of attack — as well as some of the emerging ideas about how to test these concepts...

View Article Here   Read More

THE SONS OF GOD ~ A Lecture by Biblical Scholar Michael Heiser

Mike Heiser is a scholar in the fields of biblical studies and the ancient Near East. He is the Academic Editor of Logos Bible Software. Mike earned the M.A. and Ph.D. in Hebrew Bible and Semitic Languages at the University of Wisconsin-Madison in 2...

View Article Here   Read More

Baby Ben Born to Our World Bearing a Message for Humanity ~ By Greg Giles



Baby Ben calf 09252014 A new calf at Vale Wood Farms, a family dairy farm business in Loretto, Cambria County, bears a No. 7 on his forehead. The farm has named him "Baby Ben."
Beautiful Pennsylvania calf Baby Ben


Does Baby Ben, the beautiful Cambria County Pennsylvania calf named after hometown Pittsburgh Steeler quarterback Ben Roethlisberger, come into our our world bearing a message for an awakening humanity?


The number SEVEN is one of the most significant numbers in the Holy Bible, and was the most sacred number to the ancient Hebrews. Seven is the total sum of earth crowned with heaven - the four-square earth plus the divine COMPLETENESS OF GOD.

The number SEVEN is used over 700 times in the Bible, and in the  Book of Revelation the number SEVEN is used symbolically from beginning to end. There are SEVEN churches, SEVEN Spirits, SEVEN stars, SEVEN seals, SEVEN trumpets, SEVEN vials, SEVEN personages, SEVEN dooms, and SEVEN new things.

SEVEN symbolizes Spiritual Perfection. All of life revolves around this number, and for very good reason. If a universe was to be created and it was to be seeded with everlasting life, SEVEN levels or stages or dimensions would be the natural choice, as in music theory, there are seven notes to the major scale, with the 8th note being the octave when another scale begins  again.  
  
Baby Ben was born Saturday on Vale Wood Farms in Loretto, Pennsylvania, about 80 miles east of Pittsburgh. “He turned to face me, and I said, ‘Wow, it’s a perfect little 7,’ ” Ms. Itle-Westrick said.She posted the picture to the farm’s Facebook page Wednesday. By the next afternoon, Baby Ben totaled more than 1,100 “likes” and nearly 100 comments.

The family doesn’t sell any meat from their cows, Ms. Itle-Westrick said. Baby Ben will be on display, and available for photo opportunities — during the farm’s pumpkin patch event Oct. 1-19.
Greg Giles

View Article Here   Read More

Space station detector reports more hints of dark matter—or not



New reports of further evidence for dark matter have been greatly exaggerated. Yesterday, researchers working with the Alpha Magnetic Spectrometer (AMS), a $2 billion cosmic ray detector attached to the International Space Station, reported their latest data on a supposed excess of high-energy positrons from space. They contended—at least in a press release—that the new results could offer new hints that they’ve detected particles of dark matter, the mysterious stuff whose gravity binds the galaxies. But several cosmic ray physicists say that the AMS data are still perfectly consistent with much more mundane explanations of the excess. And they doubt AMS alone will resolve the issue.
The leader of the AMS team, Nobel laureate Samuel Ting of the Massachusetts Institute of Technology in Cambridge, takes care to say that the new results do not prove that AMS has detected dark matter. But he also says the data lend more support to that interpretation than to some others. "The key statement is that we have not found a contradiction with the dark matter explanation," he says.
The controversy centers on AMS's measurement of a key ratio, the number of antimatter positrons to the sum of positrons and electrons. In April 2013, AMS confirmed early reports that as the energy of the particles increased above about 8 gigaelectron Volts (GeV), that ratio, or "positron fraction," increased, even as the individual fluxes of electrons and positrons were falling. That increase in the relative abundance of positrons could signal the presence of dark matter particles. According to many theories, if those particles collide, they would annihilate each other to produce electron-positron pairs. That would alter the balance of electrons and positrons among cosmic rays, as the usual source such as the cloudlike remnants of supernova explosions produce far more electrons than positrons.
However, that interpretation was hardly certain. Even before AMS released its measurement of the ratio, astrophysicists had argued that the excess positrons could potentially emanate from an undetected nearby pulsar. In November 2013, Eli Waxman, a theoretical astrophysicist at the Weizmann Institute of Science in Rehovot, Israel, and colleagues went even further. They argued that the excess positrons could come simply from the interactions of "primary" cosmic rays from supernova remnants with the interstellar medium. If so, then the positrons were just "secondary" rays and nothing to write home about.
However, AMS team researchers see two new features that are consistent with the dark matter interpretation, they reported online yesterday in Physical Review Letters. First, the AMS team now sees that after rising with energy, the positron fraction seems to level off and may begin to fall at an energy of 275 GeV, as would be expected if the excess were produced by colliding dark matter particles, as the original particles' mass would put an upper limit on the energy of the positron they spawned. AMS researchers say the leveling off would be consistent with a dark matter particle with a mass of 1 teraelectron volt (TeV). (Thanks to Albert Einstein’s famous equivalence of mass and energy, the two can be measured in the same units.)
Second, the AMS team measured the spectra of electrons and positrons individually. They found that the spectra have different shapes as energy increases. "It's really surprising that the electrons and positrons are so different," Ting says. And, he argues, the difference suggests that the positrons cannot be secondary cosmic rays produced by primary cosmic ray electrons, as such production should lead to similar spectra.
But some cosmic ray physicists aren't convinced. For example, in AMS's graph of the electron fraction, the error bars at the highest energies are large because the high-energy particles are so rare. And those uncertainties make it unclear whether the positron fraction really starts to drop, says Stéphane Coutu, a cosmic ray physicist at Pennsylvania State University, University Park. And even if the positron fraction does fall at energies higher than AMS reported, that wouldn't prove the positrons come from dark matter annihilations, Coutu says. Such a "cutoff" could easily arise in positrons from a pulsar, he says, if the spatial region in which the pulsar accelerates particles is of limited size. All told, the new results are "probably consistent with anything," Coutu says.
Similarly, Waxman questions Ting's claim that the new data suggest the positrons aren't simply secondary cosmic rays. If that were the case, then the electrons and positrons would be coming from different places and there would be no reason to expect their spectra to be similar, Waxman says. Moreover, he notes, AMS's measurement of the positron fraction seems to level out just at the limit that he and colleagues predicted would be the maximum achievable through secondary cosmic rays. So, in fact, the new data support the interpretation that the positrons are simply secondary cosmic rays, he says. "To me this is a very strong indication that we are seeing cosmic ray interactions.”
Will the argument ever end? AMS is scheduled to take data for 10 more years, which should enable scientists to whittle down the uncertainties and extend their reach toward higher energies, Ting says. "I think we should be able to reach 1 TeV with good statistics," he says, and that should be enough to eventually settle the dispute. But Gregory Tarlé, an astrophysicist at the University of Michigan, Ann Arbor, says, "I don't think that's a legitimate claim." Higher energy cosmic rays arrive at such a low rate that even quadrupling the data set would leave large statistical uncertainties, he says. So, Tarlé suspects, years from now the AMS results will likely look about as ambiguous they do now.

View Article Here   Read More

Moving from the Physical Body Focus to the Spiritual Body

{mainvote}

By Lisa Gawlas

The universe…. such a tricky tricky thing it is. Ok I will call it what it is, my soul, my own high energy field… freakin tricky. But of course, had spirit even once said you are going ...

View Article Here   Read More
Older posts




Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑