Tag: random (page 1 of 3)

1717 thru 61117 KALEIDOSCOPIC HUMANOIDS PORTFOLIO

View Article Here   Read More

BLUE AVIANS HELPING PROGRESS!! Mike Quinsey ~ Higher Self 09 June 2017 Galactic Federation of Ligh

View Article Here   Read More

3 KRYON CHANNELINGS “Transition” – “Nothing is Random!” “The Resilient Human”

View Article Here   Read More

Preparing for First Contact by the Pleiadians Chapter 21 The Rescue August 7, 2016

View Article Here   Read More

Has Cancer Been Completely Misunderstood?

A Failed War On Cancer Sayer Ji, Green Med InfoEver since Richard Nixon officially declared a war on cancer in 1971 through the signing of the National Cancer Act, over a hundred billion dollars of taxpayer money has been spent on research and drug development in an attempt to eradicate the disease, with trillions more spent by the cancer patients themselves, but with disappointing results.Even after four decades of waging full-scale “conventional” (s [...]

View Article Here   Read More

11 Common Symptoms of the Global Depopulation Slow Kill

Sigmund Fraud, Staff Writer“Maintain humanity under 500,000,000 in perpetual balance with nature.” – The Georgia GuidestonesThe full-spectrum global attack on human health is quite obvious to see for anyone who is paying attention and in search of wellness. So many of the factors that are negatively influencing public heath could easily be prevented or removed from society, yet the decisions of the ruling class continue to ensure that our food supply [...]

View Article Here   Read More

New Light on Our Accelerating Universe –"Not as Fast as We Thought"

 A Type Ia supernova, SN1994D, is shown exploding in lower left corner of the image at the top of the page of the galaxy NGC 4526 taken by the Hubble Space Telescope. (High-Z Supernova Search Team, HST, NASA)Excerpt from dailygalaxy.com Cer...

View Article Here   Read More

New research shows Universe expansion pace isn’t as fast as assumed earlier



universe


Excerpt from thewestsidestory.net

The Universe is expanding and any student of astronomy will vouch to this fact. However according to a team of astronomers the acceleration of the universe may not be as quick as it was assumed earlier.

A team of astronomers have discovered that certain types of supernova are more varied than earlier thought of and in the process have led to the biggest mystery of the universe-how fast is the universe expanding after the big bang?

Peter A. Milne of the University of Arizona said, “We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances — and thus when the universe was younger, there are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn’t appear to be the case.”
The discovery throws new light on the currently accepted view of the universe expanding at a faster and faster rate pulled apart by an unknown force called dark energy this observation resulted in 2011 Nobel Prize for Physics.
Milne said, “The idea behind this reasoning, is that type Ia supernovae happen to be the same brightness — they all end up pretty similar when they explode. Once people knew why, they started using them as mileposts for the far side of the universe.The faraway supernovae should be like the ones nearby because they look like them, but because they’re fainter than expected, it led people to conclude they’re farther away than expected, and this in turn has led to the conclusion that the universe is expanding faster than it did in the past.”
The researchers felt that the accelerating universe can be explained on the basis of color difference in between two groups of supernova leaving less acceleration than earlier assumed and in the process will require lesser dark energy.

Milne said, “We’re proposing that our data suggest there might be less dark energy than textbook knowledge, but we can’t put a number on it, until our paper, the two populations of supernovae were treated as the same population. To get that final answer, you need to do all that work again, separately for the red and for the blue population.

Type la supernovae are considered as a benchmark for far away sources of light they do have a fraction of variability which has limited our knowledge of the size of the universe.
The distance of objects with the aid of our binocular vision and the best space-based telescopes and most sophisticated techniques works out in the range of ten or twenty thousand light years. 
However as compared to the vastness of space, this is just pea nuts.
For Distances greater than that it is imperative to compare the absolute and observed brightness of well understood objects and to use the difference to determine the object’s distance.

In astronomy it is difficult to find an object of known brightness since there are examples of both bright and dim stars and galaxies. However there is one event which can be used to work out its absolute brightness. Supernovas are the final stages of a dying star and it explodes with such violence, the flash can be seen across the vast universe.

Type la Supernovae occurs in a binary star system when a white dwarf scoops off mass from its fellow star. This reproducible mechanism gives a well determined brightness and therefore scientists term such Type la supernovae as ‘standard candles’.

Astronomers found that the Type la supernovae is so uniform that it has been designated as cosmic beacons and used to assess the depths of the universe. It is now revealed that they fall into different populations and are not very uniform as previously thought. .

View Article Here   Read More

Frustrated magnets showing features of Hall Effect stun Princeton University researchers


Frustrated-Magnets



Excerpt from worldtechtoday.com

A group of researchers at the Princeton University has found that frustrated magnets, inspite of not possessing any magnetic feature at low temperatures, do exhibit features of Hall Effect. ‘Frustrated’ magnets are so called because of their inability of getting a long range magnetic order inspite of a huge exchange between the spins of their elementary particles.

The Hall Effect suggests that when magnetic field is applied to electric current carried by charged particles present in a conductor, it causes magnet to bend to the other side of semi-conductor. They are of great interest in physics and material science. Appreciating that frustrated magnets are capable of producing Hall Effect could hold the key to future advances in computing and the creation of devices such as quantum computers.

“To talk about the Hall Effect for neutral particles is an oxymoron, a crazy idea,” said N. Phuan Ong, one of the authors of the study and Eugene Higgins Professor of Physics at Princeton.

Inspite of that, he together with his colleague, Princeton’s Russell Wellman Moore Professor of Chemistry as well as their graduate students Max Hirschberger and Jason Krizan witnessed this unusual behavior in frustrated magnets.

“All of us were very surprised because we work and play in the classical, non-quantum world. Quantum behavior can seem very strange, and this is one example where something that shouldn’t happen is in reality there. It really exists,” said Ong in a statement.
The researchers wanted to find out the reason underlying “discontent” nature of Hall Effect.

In this particular case, the team led by Ong and Moore studied pyrochlores, a class of magnets ‘which should have orderly “spins” at very low temperature, but have been found to have spins that point in random directions, thus rendering them with magnetic frustration properties.’ They attached small electrodes to both sides of crystals and later passed heat through them using microheaters at extremely low temperatures.

The outcome of the experiment, states Ong, stunned the entire team.

View Article Here   Read More

Science of frustrated magnets: Hall Effect experiment reveals clues to their discontent

Excerpt from thewestsidestory.netA scientific study carried out in Princeton has brought about the discovery of unlikely properties in materials called frustrated magnets using the Hall Effect.Hall Effect is the property of magnetic fields having inf...

View Article Here   Read More

Is playing ‘Space Invaders’ a milestone in artificial intelligence?





Excerpt from latimes.com

Computers have beaten humans at chess and "Jeopardy!," and now they can master old Atari games such as "Space Invaders" or "Breakout" without knowing anything about their rules or strategies.

Playing Atari 2600 games from the 1980s may seem a bit "Back to the Future," but researchers with Google's DeepMind project say they have taken a small but crucial step toward a general learning machine that can mimic the way human brains learn from new experience.

Unlike the Watson and Deep Blue computers that beat "Jeopardy!" and chess champions with intensive programming specific to those games, the Deep-Q Network built its winning strategies from keystrokes up, through trial and error and constant reprocessing of feedback to find winning strategies.

Image result for space invaders

“The ultimate goal is to build smart, general-purpose [learning] machines. We’re many decades off from doing that," said artificial intelligence researcher Demis Hassabis, coauthor of the study published online Wednesday in the journal Nature. "But I do think this is the first significant rung of the ladder that we’re on." 
The Deep-Q Network computer, developed by the London-based Google DeepMind, played 49 old-school Atari games, scoring "at or better than human level," on 29 of them, according to the study.
The algorithm approach, based loosely on the architecture of human neural networks, could eventually be applied to any complex and multidimensional task requiring a series of decisions, according to the researchers. 

The algorithms employed in this type of machine learning depart strongly from approaches that rely on a computer's ability to weigh stunning amounts of inputs and outcomes and choose programmed models to "explain" the data. Those approaches, known as supervised learning, required artful tailoring of algorithms around specific problems, such as a chess game.

The computer instead relies on random exploration of keystrokes bolstered by human-like reinforcement learning, where a reward essentially takes the place of such supervision.
“In supervised learning, there’s a teacher that says what the right answer was," said study coauthor David Silver. "In reinforcement learning, there is no teacher. No one says what the right action was, and the system needs to discover by trial and error what the correct action or sequence of actions was that led to the best possible desired outcome.”

The computer "learned" over the course of several weeks of training, in hundreds of trials, based only on the video pixels of the game -- the equivalent of a human looking at screens and manipulating a cursor without reading any instructions, according to the study.

Over the course of that training, the computer built up progressively more abstract representations of the data in ways similar to human neural networks, according to the study.
There was nothing about the learning algorithms, however, that was specific to Atari, or to video games for that matter, the researchers said.
The computer eventually figured out such insider gaming strategies as carving a tunnel through the bricks in "Breakout" to reach the back of the wall. And it found a few tricks that were unknown to the programmers, such as keeping a submarine hovering just below the surface of the ocean in "Seaquest."

The computer's limits, however, became evident in the games at which it failed, sometimes spectacularly. It was miserable at "Montezuma's Revenge," and performed nearly as poorly at "Ms. Pac-Man." That's because those games also require more sophisticated exploration, planning and complex route-finding, said coauthor Volodymyr Mnih.

And though the computer may be able to match the video-gaming proficiency of a 1980s teenager, its overall "intelligence" hardly reaches that of a pre-verbal toddler. It cannot build conceptual or abstract knowledge, doesn't find novel solutions and can get stuck trying to exploit its accumulated knowledge rather than abandoning it and resort to random exploration, as humans do. 

“It’s mastering and understanding the construction of these games, but we wouldn’t say yet that it’s building conceptual knowledge, or abstract knowledge," said Hassabis.

The researchers chose the Atari 2600 platform in part because it offered an engineering sweet spot -- not too easy and not too hard. They plan to move into the 1990s, toward 3-D games involving complex environments, such as the "Grand Theft Auto" franchise. That milestone could come within five years, said Hassabis.

“With a few tweaks, it should be able to drive a real car,” Hassabis said.

DeepMind was formed in 2010 by Hassabis, Shane Legg and Mustafa Suleyman, and received funding from Tesla Motors' Elon Musk and Facebook investor Peter Thiel, among others. It was purchased by Google last year, for a reported $650 million. 

Hassabis, a chess prodigy and game designer, met Legg, an algorithm specialist, while studying at the Gatsby Computational Neuroscience Unit at University College, London. Suleyman, an entrepreneur who dropped out of Oxford University, is a partner in Reos, a conflict-resolution consulting group.

View Article Here   Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here   Read More

Scientists discover organism that hasn’t evolved in more than 2 billion years



Nonevolving bacteria
These sulfur bacteria haven't evolved for billions of years.
Credit: UCLA Center for the Study of Evolution and the Origin of Life

Excerpt from natmonitor.com
By Justin Beach

If there was a Guinness World Record for not evolving, it would be held by a sulfur-cycling microorganism found off the course of Australia. According to research published in the Proceedings of the National Academy of Sciences, they have not evolved in any way in more than two billion years and have survived five mass extinction events.
According to the researchers behind the paper, the lack of evolution actually supports Charles Darwin’s theory of evolution by natural selection.
The researchers examined the microorganisms, which are too small to see with the naked eye, in samples of rocks from the coastal waters of Western Australia. Next they examined samples of the same bacteria from the same region in rocks 2.3 billion years old. Both sets of bacteria are indistinguishable from modern sulfur bacteria found off the coast of Chile.





“It seems astounding that life has not evolved for more than 2 billion years — nearly half the history of the Earth. Given that evolution is a fact, this lack of evolution needs to be explained,” said J. William Schopf, a UCLA professor of earth, planetary and space sciences in the UCLA College who was the study’s lead author in a statement.
Critics of Darwin’s theory of evolution might be tempted to jump on this discovery as proof that Darwin was wrong, but that would be a mistake.
Darwin’s work focused more on species that changed, rather than species that didn’t. However, there is nothing in Darwin’s work that states that a successful species that has found it’s niche in an ecosystem has to change. Unless there is change in the ecosystem or competition for resources there would be no reason for change.
“The rule of biology is not to evolve unless the physical or biological environment changes, which is consistent with Darwin. These microorganisms are well-adapted to their simple, very stable physical and biological environment. If they were in an environment that did not change but they nevertheless evolved, that would have shown that our understanding of Darwinian evolution was seriously flawed.” said Schopf, who also is director of UCLA’s Center for the Study of Evolution and the Origin of Life.
It is likely that there were genetic mutations in the organisms. Mutations are fairly random and happen in all species, but unless those mutations are improvements that help the species function better in the environment, they usually do not get passed on.
Schopf said that the findings provide further proof that Darwin’s ideas were right.
The oldest fossils analyzed for the study date back to the Great Oxidation Event. This event, which occurred between 2.2 and 2.4 billion years ago, saw a substantial increase in Earth’s oxygen levels. That period also saw an increase in sulfates and nitrates, which is all that the microorganisms would have needed to survive and reproduce.
Shopf and his team used Raman spectroscopy, which allows scientists to examine the composition and chemistry of rocks as well as confocal laser scary microscopy to generate 3-D images of fossils embedded in rock.
The research was funded by NASA Astrobiology Institute, in the hope that it will help the space agency to find life elsewhere.

View Article Here   Read More
Older posts




Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑