Tag: Star Trek (page 1 of 2)

This Alien Color Catalog May Help Us Spot Life on Other Planets






Excerpt from smithsonianmag.com


In the hunt for alien life, our first glimpse of extraterrestrials may be in the rainbow of colors seen coming from the surface of an exoplanet.

That's the deceptively simple idea behind a study led by Siddharth Hegde at the Max Planck Institute for Astronomy in Germany. Seen from light-years away, plants on Earth give our planet a distinctive hue in the near-infrared, a phenomenon called red edge. That's because the chlorophyll in plants absorbs most visible light waves but starts to become transparent to wavelengths on the redder end of the spectrum. An extraterrestrial looking at Earth through a telescope could match this reflected color with the presence of oxygen in our atmosphere and conclude there is life here.


exoplanets palette
Eight of the 137 microorganism samples used to measure biosignatures for the catalog of reflection signatures of Earth life forms. In each panel, the top is a regular photograph of the sample and the bottom is a micrograph, a version of the top image zoomed-in 400 times.



Plants, though, have only been around for 500 million years—a relative blip in our planet's 4.6-billion-year history. Microbes dominated the scene for some 2.5 billion years in the past, and some studies suggest they will rule the Earth again for much of its future. So Hegde and his team gathered 137 species of microorganisms that all have different pigments and that reflect light in specific ways. By building up a library of the microbes' reflectance spectra—the types of colors those microscopic critters reflect from a distance—scientists examining the light from habitable exoplanets can have a plethora of possible signals to search for, the team argues this week in the Proceedings of the National Academy of Sciences.

"No one had looked at the wide range of diverse life on Earth and asked how we could potentially spot such life on other planets, and include life from extreme environments on Earth that could be the 'norm' on other planets," Lisa Kaltenegger, a co-author on the study, says via email. "You can use it to model an Earth that is different and has different widespread biota and look how it would appear to our telescopes."

To make sure they got enough diversity, the researchers looked at temperate-dwelling microbes as well as creatures that live in extreme environments like deserts, mineral springs, hydrothermal vents or volcanically active areas.

While it might seem that alien life could take a huge variety of forms—for instance, something like the silicon-based Horta from Star Trek—it's possible to narrow things down if we restrict the search to life as we know it. First, any life-form that is carbon-based and uses water as a solvent isn't going to like the short wavelengths of light far in the ultraviolet, because this high-energy UV can damage organic molecules. At the other end of the spectrum, any molecule that alien plants (or their analogues) use to photosynthesize won't be picking up light that's too far into the infrared, because there's not enough energy at those longer wavelengths.

In addition, far-infrared light is hard to see through an Earth-like atmosphere because the gases block a lot of these waves, and whatever heat the planet emits will drown out any signal from surface life. That means the researchers restricted their library to the reflected colors we can see when looking at wavelengths in the visible part of the spectrum, the longest wavelength UV and short-wave infrared.

The library won't be much use if we can't see the planets' surfaces in the first place, and that's where the next generation of telescopes comes in, Kaltenegger says. The James Webb Space Telescope, scheduled for launch in 2018, should be able to see the spectra of relatively small exoplanet atmospheres and help scientists work out their chemical compositions, but it won't be able to see any reflected spectra from material at the surface. Luckily, there are other planned telescopes that should be able to do the job. The European Extremely Large Telescope, a 40-meter instrument in Chile, will be complete by 2022. And NASA's Wide Field Infrared Survey Telescope, which is funded and in its design stages, should be up and running by the mid-2020s.

Another issue is whether natural geologic or chemical processes could look like life and create a false signal. So far the pigments from life-forms look a lot different from those reflected by minerals, but the team hasn't examined all the possibilities either, says Kaltenegger. They hope to do more testing in the future as they build up the digital library, which is now online and free for anyone to explore at biosignatures.astro.cornell.edu.

View Article Here   Read More

The End of the Space Race?




Excerpt from
psmag.com

A far cry from the fierce Cold War Space Race between the U.S. and the Soviet Union, exploration in the 21st century is likely to be a much more globally collaborative project.

Today, NASA’s goal to put astronauts on Mars by the 2030s could be a similarly unifying project. And not only in the United States. A far cry from the fierce Cold War Space Race between the U.S. and the Soviet Union, exploration in the 21st century is likely to be a far more globally collaborative project.

Why has the idea of reaching Mars captured the world? A trip to Mars is a priority for many scientific reasons—some believe it’s the planet that most resembles our own, and one that could answer the age-old question of whether we’re alone in the universe—but there’s also been a long popular fascination with the planet, Stofan observed. Ever since Giovanni Virginio Schiaparelli first observed the canali on Mars in the 1800s or when H.G. Wells wrote about aliens from Mars in his 1898 science fiction novel, The War of the Worlds, the planet has loomed large in the public’s imagination.

NASA’s view is to turn over to the private sector those projects that in a sense have become routine so that it can focus its resources on getting to Mars.

This spirit of trans-border ownership and investment seems set to continue. One key part of this is the Global Exploration Roadmap, an effort between space agencies like NASA, France’s Centre National d’Etudes Spatiales, the Canadian Space Agency, and the Japan Aerospace Exploration Agency, among many others, that is intended to aid joint projects from the International Space Station to expeditions to the Moon and near-Earth asteroids—and to reach Mars. On a recent trip to India’s space agency, Stofan recounted to me, she met with many Indian engineers who were just as excited as the Americans to get scientists up there, not only to explore, but also to begin nailing down the question of whether there was ever life on the red planet.

It’s also clear that the next stage of space exploration will not only be more global, but will equally involve greater private and public partnerships.

This environment feels a lot different from the secretive and adversarial Space Race days, when the U.S. and Soviet Union battled to reach the moon first. What’s changed? The Cold War is over, of course, but with it, the funding commitment may also be missing this time around. Stofan mentioned, in response to an audience question, that at the time of the Apollo missions, NASA got up to about four percent of the federal budget, while now it’s only around 0.4 percent. The dollars are still large, but perhaps increased international and private cooperation can be seen as an efficient, clever way to do more with less.

So, what does the future hold? NASA is extremely focused on how to get to Mars and back again safely, Stofan told the audience, but the fun role of science fiction, she suggested, is to start envisioning what the steps after that might be. For example, what might it be like to live on Mars? After all, science often gets its inspiration from the creative world. Just look at how similar mobile phones are to the communicators from Star Trek, she pointed out, or the fact that MIT students made a real-life version of the robotic sphere that Luke Skywalker trains with in Star Wars. “Stories are a great counterpoint to science,” she said.

View Article Here   Read More

Invisible shield in space protects Earth from ‘killer electrons’


A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth's radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet. Image by NASA/Goddard
A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth’s radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet. These findings were published in Nature magazine on Nov. 26, 2014. Image by NASA/Goddard



Excerpt from pbs.org

A team led by professors and scientists from the University of Colorado at Boulder have discovered an invisible shield in space that blocks Earth from so-called “killer electrons,” according to findings published in Nature on Thursday.

“Somewhat like the shields created by force fields on Star Trek that were used to repel alien weapons, we are seeing an invisible shield blocking these electrons,” said Professor Daniel N. Baker, the lead author of the study in a press release.

“It’s an extremely puzzling phenomenon.”

According to NASA, “killer electrons” are the devilish doppelgangers of Earth’s subatomic allies.

While the flow of electrons is used as electricity to power everything from cell phones to light bulbs, when electrons reach high speeds like that of more than 100,000 miles per second in space, they can become dangerous and have been known to destroy satellites and even injure astronauts.

The shield, said to be located some 7,200 miles from Earth and impenetrable, lies within the Van Allen radiation belts, two rings around Earth containing potent electrons and protons trapped by the Earth’s magnetic field.

In 2008, NASA’s STEREO spacecraft, discovered that electrons turn into speedy, destructive “killer electrons” in part when picked up in the Belts by powerful radio waves known as whistlers.

Luckily though: “It’s almost like theses electrons are running into a glass wall in space,” said Baker of the shield, which was discovered using data collected by NASA’s Van Allen probes.

View Article Here   Read More

Earth ‘has Star Trek force fields’

Excerpt frombelfasttelegraph.co.ukA US team discovered the barrier, some 7,200 miles above the Earth's surface, that blocks high energy electrons threatening astronauts and satellites.Scientists identified an "extremely sharp" boundary within the Van...

View Article Here   Read More

Ascension Simply Explained!

View Article Here   Read More

Scientists Learning to Control Antimatter

{mainvote}

By Chris Capps 3/8/12

The story of antimatter has been a long and arduous one, with the precious and apparently rare matter in such small trace amounts that humanity may have difficulty gathering it for its more ambitious use...

View Article Here   Read More

Message from the Galactic Federation 1/26/12

{mainvote}

26 January 2012

Channeler: Greg Giles

It is you that have always made the rules that govern your existence. Now, working within the frequency of togetherness, you are all rediscovering the powers that you have always posses...

View Article Here   Read More

Interview with Sharula Dux from Telos by Joanna Cherry

{mainvote}

Published on Sunday, 17 July 2011 17:18  

Interview with Sharula Dux by Joanna Cherry

Princess Sharula Dux is a woman known to me for many years. Her message is amazing, yet simple: she is from Telos, a Lemuria...

View Article Here   Read More

Ferreira’s Fast Fusion Frigate

{mainvote}

Moacir L. Ferreira Jr. has published a concept for a novel fusion reactor, and a method of using its output for space propulsion. Fusion power combined with an exotic electromagnetic propulsion system could open up the solar system to...

View Article Here   Read More

Interview with Mike Quinsey

{mainvote}

Interview with Mike Quinsey

Judging by the comments that we receive, Mike Quinsey is no doubt one of the most loved and appreciated channelers that we publish on our site.

Mike also has his own we...

View Article Here   Read More

Telos: The Lemurian City Inside Mt. Shasta

{mainvote}

I have read this before. But I publish it anyway because it's still interesting.

EagleEyes

Joanna Cherry

(Quotes from this article, and from a number of my other articles on ascension and related subjec...

View Article Here   Read More

Ascension Simply Explained!

View Article Here   Read More

Seth Speaks Newsletter – Vol. XXIII

View Article Here   Read More
Older posts




Gaia-Cosmic Disclosure S1E1 LB728x90

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
,
unless otherwise marked.

Terms of Use | Privacy Policy

Member of The Internet Defense League




Up ↑